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High-resolution data collected over the past 60 years by a single family of Siberian
scientists on Lake Baikal reveal significant warming of surface waters and long-term
changes in the basal food web of the world's largest, most ancient lake. Attaining depths
over 1.6 km, Lake Baikal is the deepest and most voluminous of the word's great lakes.
Increases in average water temperature (1.21 'C since 1946), chlorophyll a (300% since
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Using multivariate autoregressive models to infer

species interaction strengths: a statistical approach
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Lots of applications MAR models to analyze

freshwater plankton datasets

Citation System

Francis et al 2012 Marine plankton
Scheef et al 2012 The data have no

Hall et al 2009 .

Hampton et al 2008 observation error or have
Duffy 2007 known error

Hampton et al 2006
Huber and Gaedke 2006

i
Hampton and Schindler 2 Covariates are known

Hampton et al 2006 perfectly (no error)
Carpenter et al 2005
Lves et al 2003 No missing values kton

Beisner et al 2003
Klug and Cottingham 2001

Fischer et al 2001 Reasonable confidence on
Klug et al 2000 how to group species
Ives et al 1999 rmeory T Tesnwarer-prankton

Ives 1995 Theory



Some problems we have with ecological data

and models

Multivariate time-series data with
* Lots of gaps (missing data)
* (Unknown) observation error

+ Complex (unknown) relationships between
observation and underlying process trajectory

- Non-ideal covariate data --- instrumentation
changed, multiple time series

Solution - State-space models > MARSS



MARSS models:

Multivariate AutoRegressive State-Space
SOME UNDERLYING "HIDDEN" AUTOREGRESSIVE PROCESS
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MARSS model

Multivariate .
autoregressive ™ x; = Bx;,_1 + u+ w;. where w; ~ MVN(0,Q)

“"random walk" v, = Zx; + a+ vy, where v ~ MVN(0,R) m
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Model with lags (lag-p models)

x; = Bix;_; + Box,_, + u’ + wj. where w; ~ MVN(0, Q)

k at t-2 affects x at t

In MARSS form, it becomes...
x; = Bx¢_1 +u+ w;, where wy ~ MVN(0. Q)

Xt | _ [B1 Bz Xt u’ v Q0
L;_J - [I 0] lx;_z T Lo W e MVRLO-4 g




Multivariate moving average models

(autocorrelated process or observ noise)

X, =w,+Ow,_; +Oyw, 5. where w, ~ MVN(0,Q’)

In MARSS form, it becomes...
x; = Bx¢_1 +u+ w;, where wy ~ MVN(0. Q)

X! _, 0L, 0] [x}_, [0 | 00 0]
X;_1| =100 L,| |xi_o|+ 0|, wg~ MVN|0,{000
x; | (00 0 x| [wi 00Q"
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Stochastic level model (used to detect

structural breaks)

Ly = X1 + Wy

Yt = Lt T Ut

}The mean level is an autoregressive process

1400

model 2, AlCc= 1282

1000
]

Flow volume

600
|

L L R L D R B e
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970



Model with covariates to look for effects

of the covariate or account for effects
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Model the covariates with an observation

model and process model

(v) (v) (v) O (V)
B C ] [X ] + [“m] +w;. W, ~ MVN (11 Q ?‘”D
' I u 0 Q

7@ D7 [x® a(v) . R 0
[ U' Z(C)] [X{C)]I_ + [a(cj +V1‘_*. Vt ~ h_[\’N (0. - “ R{C) )

The covariates can be modeled as a autoregressive process

The covariates might have an observation process (to deal
with missing values, multiple time series, changing time series)




Dynamic Factor Analysis:

"PCA for time series”

Lot of time series (case reproductive

output of Alaska salmon stocks) Reduce to a few hidden drivers
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Heavily used in economics, finance and

engineering

Forecasting,

structural time

series model.s and Time Series Analysis “ il
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i ”
Analysis of

FINANCIAL
TIME SERIES
ANDREW C. HARVEY an Introductioa to

State Space Time
Series Analysis

tFndly
Andrew Karvey,

Shesm jan Xoopman
and Neil shephard

Bobert H. Shumway
David S, Stoffer

State Space
and Unobserved
Component Models

it R Examples



We set out to solve statistical problems that ecologists

have but engineers and economists don't have (so much)

Multivariate time-series data with
* Lots of gaps (missing data)
(Unknown) observation error

* (Holmes, E. E. 2010, 2012. Derivation of the EM
a algorithm for constrained and unconstrained multivariate
\ autoregressive state-space (MARSS) models.

changed, multiple time series
Constrained or shared parameters

Solution > A general Expectation-Maximization
algorithm for MARSS models



Statistical advances aren't very useful without

tools to apply them...

= CRAN - Package MARSS - Windows Internet Explorer

Google “MARSS cran”
or “time series task view cran”

E. E. Holmes and E. J. Ward

Analysis of multivariate time-

MARSS: Multivariate Autcoregressive State-Space Modelin . . \

y ? 7 series using the MARSS package
The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariat
data_ Fitting is primarily via an Expectation-Maximization (EM) algorithm, although fitting via the BFGS algorithm (using the op
model (DLM) and vector autoregressive model (VAR) model. Functions are provided for parametric and innovations bootstra
(AICb), confidences intervals via the hessian approximation and via bootstrapping and calculation of auxilliary residuals for def
for parameter estimation for a variety of applications, model selection, dynamic factor analvsis, outlier and shock detection, an October 21, 2011
at the . command line to open the MARSS user guide.

version 2.7

Version: 27

Depends: MASS, mvtnorm, nhme, time, KFAS

Published: 2011-10-23

Author: Eli Holmes, Eric Ward, and Kellie Wills, NOAA Seattle, USA
Maintainer: Eli Holmes <eli.holmes at noaa.gov>

License: GPL-2

In views: TimeSeries

CRAN checks: MARSS results

Downloads: ) .
Mathematical Biology Program

Northwest Fisheries Science Center, Seattle, WA

Package source: MARSS 2 7 tar gz

MacOS X binary: MARSS 2.71gz

Windows binary: MARSS 2. 7.zip
Reference manual: MARSS pdf . .
Vignettes:  EM Derivation Developed with support by the Comparative
uick Start Gy . . . .

User Guie | Analysis of Marine Ecosystem Organizations
‘hanges between versions

Old sources: MARSS archive (CAM EO) P rog fam




Lots of case studies and examples from workshops we

(Eric Wark, Brice Semmens, Mark Scheuerell, and
myself) have taught

12 Case Study 3: Using MARSS models to identify spatial

population structure and covariance ....................... 103
12.1 The problem .. ... .. . e e 103
12.2 How many distinet subpopulations?. ... ... ... ... ... .... 104
12.3 Is Hood Canal separate? ....... ... .. ... ... ... .. ........ 107

13 Case Study 4: Dynamic factor analysis (DFA) using

M A R S 111
13.1 Dynamic factor analysis .. ... ... ... .. .. .. .. ... .. 111
13.2 Thedata . ... ... . e 113
13.3 Setting up the model ...... ... ... .. .. ... ... ... .. . . 114
13.4 Fitting the model. .. ... ... . .. . . . 117

13.5 Using model selection to determine the number of trends .. ... 117
13.6 Using a varimax rotation to determine the trend loadings..... 120

14 Case Study 5: Using state-space models to analyze noisy

animal tracking data............ ... ... ... .. ... . .. 123
14.1 A simple random walk model of animal movement ........ ... 123
14.2 The problem . .. ... ... . 124
14.3 Estimate locations from bad tag data ...................... 124
14.4 Comparing turtle tracks to proposed fishing areas ........... 128
14.5 Using specialized packages to analyze tag data .............. 129

15 Case Study 6: Detection of outliers and structural breaks
using MARSS . e 131
15.1 Detection of outliers and structural breaks.................. 131




Effects of observation error on estimates of

specues interaction strength
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Obsgr'va’rion error and simple predator-prey |.0-5 0.1
spurious densﬂry-dependence interaction matrix ~01 05

Strong density-dependence

| : )
" TRUE HIDDEN PROCESS eads to tight fluctuations

2 around an equilibrium
§ 81 No observation error;
8 S blue has negative effect
B . on black; black has
5 | positive effect on blue
‘f L T T I T I T
0 20 40 60 80 100
- — OBSERVATIONS WITH ERROR
|
= : ,'/'. n \ , Added (high) observation
B 5 ' ) v ‘I‘ ! '\,\v,'] g ¥ ,‘\ A error; more overall
E o 1 1 . ' ‘ H ’
£ 89 \p NIV AT AT AR AR Wi VA S ’ variation; more ‘noisy
E ~ L ] / 1 1) ’ 1
a g I I|j ]\;r llllll ll ,1' ‘v, ‘III ll ]'l . !
C') ',J 111'1 ]‘l ‘,j 1 v
<] ‘ ) !
‘_" E T T T T I I
0 20 40 60 80 100

Week



Observation error and Original interaction | 0-5 0.1
spurious density-dependence matrix ~-0.1 05

Ignore observation
B TRUE HIDDEN PROCESS error and density_
il dependence looks
stronger and
interactions weaker
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What are the effects of observation error on estimates

of large interaction matrices? Comparison using long-term
plankton studies in the English Channel

“L4” (§0o0d) S l J | jﬁ“‘tj

* 1 location crR, — gt
» Weekly samples at R COREAE Q‘SF rrrrr

standard time of day
* Individual counts 500 7
* Very few missing values

49.5 4

Continuous Plankton

Recorder (CPR) (noisy)

“platforms of opportunity” =
many locations

* Log10 counts | | | | |
» Times of day variable -6 -5 -4 -3 -

* Lots of missing values Scheef, L. P., D. E. Pendleton, S. E. Hampton, S. L. Katz, E. E.

« Some spp pOOfly Sampled Holmes, M. D. Scheuerell, and D.G. Johns. 2012. Assessing marine
plankton community structure from long-term monitoring data with
multivariate autoregressive (MAR) models: a comparison of fixed
station vs. spatially distributed sampling data. Limnology &
Oceanography: Methods 10: 54-64.
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B matrix

e 12x 12
Interaction
matrix

L4 (clean data)

 Green R>0

* Yellow (ignores
obs error) R=0

CPR (noisy data)

* Red

* Pink (ignores obs
error)




L4 (clean data)
Green R>0

* Yellow (ignores
obs error) R=0

CPR (noisy data)

* Pink (ignores obs

Red

error)

Observation #1

L4 data does indeed seem less
error-ridden

=0

r1 weekly R

1.0

0.0 0.5

r1 weekly (R>0 vs R=0)

corr =0.259

r1 weekly

=0

L4 weekly R

L4 weekly




B matrix

e« 12x12

e 2 groups
removed
because they
had only 3
levels in the
CPR data

L4 (clean data)

* Green

* Yellow (ignores
obs error)

CPR (noisy data)

* Red

* Pink (ignores obs
error)

Observation #2
Ignoring observation error leads
to spurious density-dependence
and the problem is (on average)
worse for the dataset where
observation error (both variance
and missing values) are higher




L4 (clean data)

* Green

* Yellow (ignores
obs error)

CPR (noisy data)

* Pink (ignores obs

Red

error)

. | % Observation #3

: . Except on the diagonal (intra-
DD), the interaction strengths
are not correlated between L4
- = and CPR datasets

L4 weekly

r1 weekly vs L4 weekly
corr = 0.357

1.0

0.5
I

-0.5
I

r1 weekly




Gets back to the "unknown observation

error = poor B estimation” issue

Unknown obs variance Known obs variance

2= 1/2

b est

2 =¢

b true

Univariate case (one spp)
* Largely solved by independent samples of same population

* Partially solved with duplicate samples of different populations
with same parameters

Multivariate case (community)
- This is where our current research is focused

* Research depends on simulations (10,000s), so fast algorithms key
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Also there is a less recognized issue: the

effect of unknown environmental drivers

N \j TRUE

TRUE + ERROR + DRIVER

Univariate case (one spp)

» This is bad unless you can demean your data without removing the true
fluctuations.

» If you remove those in your demeaning step, B->0 (spurious DD)

* Datasets much longer than any cycles in the unknown covariate are key.

Multivariate case (community)
It is generally accepted that inclusion of the important
environmental drivers is key for good B estimation



Finally, there are way too many estimated

B elements

Constraining B will
vastly improve
estimation

But current model
selection algorithms
(for MAR) require
searching a huge
model space and the
fitting step for
MARSS is too slow,
i.e. model selection
steps would = months
of computation




Motivation: understanding plankton

dynamics from long-term marine data sets
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Lots of applications to freshwater

plankton datasets

Interaction matrix

Citation System
Hall et al 2009 Freshwater plankton
Xy = th 1+ u-—+ Cft + Wi. Hampton et al 2008 Freshwater plankton
Duffy 2007 Freshwater plankton
y — : L Vi, Hampton et al 2006 Freshwater plankton
Huber and Gaedke 2006 Freshwater plankton
Hampton and Schindler 2006 Freshwater plankton
Carpenter et al 2005 Freshwater plankton
Beisner et al 2003 Freshwater plankton
Assume The daTa Klug et al 2000 Freshwater plankton
have no Hampton et al 2006 Freshwater plankton
0 bser'VGT | on error Fischer et al 2001 Freshwater plankton
Ives et al 1999 Freshwater plankton
Ives et al 2003 Freshwater plankton
Klug and Cottingham 2001 Freshwater plankton
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But the talk is about the statistical

methods

o What is a multivariate autoregressive state-space model
(MARSS or VARSS)?

o A tour of different classes of time series models
written as MARSS (more math)

o Estimating parameters using an EM algorithm for
MARSS models with linear constraints (more math)

o MARSS R package

o Estimating the species interaction matrix and covariate
matrices for PLANKTON (actually more math)

o Some results from the plankton work



Finding MLE parameters for MARSS

Joint likelihood of y(data)f x(?idden states) Loy
log L(y, z; ©) Zz (y, — Zay —a) ' R\ (y, — Zz, — a) 215 log |R|
T r oy

54

1 ('Tf Bx; | — U)TQ (If Bz, — Ll Zl: E D“|Q|
1 _ 1
_i(mﬂ_ngA l(m[,—g)—ilog|ﬂ|—§lag2ﬁ

* If you can compute the marginal likelihood L(y; ®), you can maximize that

(using some Newton-based method, like BFGS). The Kalman filter will give
you the marginal likelihood. Works great for lots of problems. But for many
big multivariate problems it doesn’t work so great.

* A different approach to finding MLE parameters for problems with hidden
states is the Expectation-Maximization (EM) algorithm.



EM algorithm

Joint likelihood of y and x is log L(y,x;®) = f(y,x,®)

The EM algorithm maximizes the expected value of the joint likelihood
Exy[logL(Y.X;0);Y (1) =y(1).0,]

Expected value of the “random variable LL” conditioned on the observed data and a set
of parameters

ExyllogL(Y.X;0):;Y(1)=y(1),0,] =
g(E(YX), E(XX), E(YY), E(X), E(Y), ©)

The expectations in this expected joint likelihood can be computed (for MARSS
models with the Kalman smoother)

We can maximize ¢(...., ®) with respect to 0O to find the ® that maximizes the
expected log likelihood.



EM algorithm for MARSS models

1.

2.

3.

4.

5.

6.

Start with 0,

Compute the expectations involving X and Y conditioned on ®; and the data

Put those Exv[logL(Y.X:0):Y (1) =y(1). 0]
to ® to get O,

and maximize with respect

Compute the expectations involving X and Y conditioned on ®, and the data

Put those Exv[logL(Y.X:0);Y (1) =y(1).9,]
to © to get O,

Repeat until convergence

and maximize with respect



But the talk is about the statistical

methods

o Estimating the species interaction matrix and covariate
matrices for PLANKTON (actually more math)

o Stabilitiy metrics (cartoons!)

o Some results from the plankton work



Multispecies Autoregressive Models (MARs) as

used in community modeling

Log abundance of
species /at t+1 Effect of species j
y on species /

at 1

Effect of environmental
variable A on species /

‘ /
X(t+1) = X(0) + Ui + Zoay;X(1) + X Ceu(t)

/ Level of environmental

Species-specific variable kat t
constant

Log abundance of
species jat t




Not a new result but perhaps not widely recognize

unknown obs error = spurious density-dependence

Eali s!un 2008, ?? 2543000
&0l vy A Bocweny of Amserica

dok 10111141461 0248 2011 0172 x

ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

LETTER

Are patterns of density dependence in the Global Population
Dynamics Database driven by uncertainty about population
abundance?

Tomas Kouare'
Departmens of Theareneal Ecology, Ecology Buildng, Lund University, SE22362, Lund, Sweden

Abgirace.  Fstimation of density dependence from time sedes data on population

Mbstract abundance is hampered in the presence of observation or messurement erors. Fiiting
Jonzm Kape® and Pery de Valpine  Diemsity dependence in tion growth rates is ofxmme]mmmmwﬂmﬂdnpﬂmm atalespace model has been propossd 25 3 solution that reduces the biss in stimates of
Deparmment of Enwronmenta) Bt & difficult to estimate. The Global Populution Dynamics Dasb: PDIY), one of the brges denaity dependence camsed by ignoring olservation errors. Whik this & often true, T show
Science, Palier and Managemen of populifon time seies avadible, has been exiemively wed @ study crom-nm patems i densiy that, Tor specific parsmeter values, them are identifiabillity Bawes in the linesr state—space
137 Mulbel Hal 8114, Universlty  dependence. A mgjor difficulty with assessing density dependence from time series i tha uncerminty in maodel when the strength of dendty dependence and the oldervation and procss ermor
of Cullfcrnin, Bqrkeley: Sqricelay: population abundance estimates can cause swong biss in both tests and estimates of swength. We analyse 627 varisnees are all wnkeown. Udng simubtion 1o explome propertiss of the estimstorn, T

casmmous data et in the GPDD wiing Gompertz population model and accmnt for uncerninty via the Kalman filter. illustrate that, unkss assumptions ae imposed on the process or observalion emor varances,
“Comeponds "‘:“ Tesuits suggest that at least 4% of the time series display density bt that it is weak and difficult the varianoe of the etimator of density dependence vares critically with the strength of the

odetect fors kange fraction. When moessinty i igroced, magrinde of and midece e deity depmdemce i density dependence. Under compe nsatory dynamics, the stronger the density dependence the

g, m“:ﬂ"”‘s ';‘::nm‘_ ¥ et g changes shoot densiey more difficult it & to estimate in the presence of observation errors. The identifiability Bsues

dependence dervn SO0, disappear when density dependence s estimated from the stste-space model with the

Ke observation error variance known o the comect value. Dimct estimates of observation

)"_""k . _ variance in abundance censuses could therefore prove helplul in estimating de s iy dependence

Demity dependence, GFDD, cheervasion exmor, e sezies. but care meeds to be taken to assess the weenalnty in variance estimate.

b Leter 011 Key wonde- denrity depandence: mate-—space models: e series analysis.
INTRODUCTION against uncertainty about populafion size and has been shown to INTRODUCTION population growth rate & oot esdy nfemed from lfe

Density dependence in populason growth mres i 2 fundamensl
concept for ecological theory as well as for popultion management.
Estmaiing density dependence in wild populations hs, however,
proved challenging. Tdeally, demsity dependence in growth rates
shaould be estimated directly from the effects of density acting on the
traits contribusing to population growdh. Given cument progess in
staiscal methods for joindy analysing data on both population size
and demographic tits (Beshess of ol 2005, and with long seem
fion smdies involving d hic duta becoming i
comman, this approach holds 2 bright furure. However, dhe number
of such smdies i currently Bmied and they only cover 2 rather mrmow
range of taxa. Long-term fime series on population abundance are
more common and cn be used 1 estimate density dependence in
population growh rates. Under this approach, density dependence &
defined 25 2 general tendency of per capita growth rates to decrease
when populafion size is large and increise when it is small, and &
identified 2 a statistical patemn not fed to any spedific bidogial
mschanism (Wolda & Dennis 1993).

It was noted early that esdmates and w58 of density dependence
based on segressing log mansformed cument chserved population size,
Fs o0 previous log transformed chserved population size, 3., ane
semsitive to uncertdinty in the observations (St-Amant 1970; Kuno
1971; 16 1972 Shde 1977} Simir concerns were aired aboat
estmars from fisheries models of sock-recraitment dara (Ludwig &
Walters 1981; Walwers & Ludwig 1981). Uncertinty inflates the Type [
ervox e of e for density dependence (Sheal o al 1998) and tends
10 bias estimates f dynamics ane
undee-compensatoey and towasds weakes density dependence i
dynamics are overcompematory (Benson 1973} Bulmer (1975)
devised two tests for demsity dependence uling the fime sesies ratre
of the data into account. One of those was designed to be robust

perform better than density dependence tests ignoring uncermingy in
estimates of populaion sbundance (Shenk & o 1998). Simple
procedures to comect for effecs of uncerninty such as hie SIMEX
method huve been suggested (Sodow 1998, Freckleton of ol 2006) bt
typically sequite that the variznce of the uncersinty about population
sme is known. A more direct spproach to account for uncertainty i
provided by stae space madkds, first used for madeling population
dynamics in fie fisheries Breramre (=g Mendelsoha 1988; Sullan
1992). State space madels in these cases comit of 2 modd of 2
populifon dnamical process combined with 2 madel of the
wcerginty in the abundance estimates, somefimes ermal obsera-
tion, messurement or sumpling error, and may be used 1o esEmare the
witance of this uncertainty as well 15 @ filter out its effecs
(de Valpine & Hastings 2002; Cabder of al 2003 Buckland  al 2004;
Denis er &, 2006). Estimars derived ﬂwnﬂmipﬂmcﬂdiwm
h Ber bias than

abandance, bt can alio have brge varinces (Kngpe 2008), and the
stafistical properties of even simple state space modsl estimanes are
not fully understosd (Dennis afal 3006 Lebreton 2009).

The Global Populaion Dynamics Datatase {GPDDY, containing
over 5000 fime series on populttion abundances obtsined from
vasiows forms of populiion surveys, has provided an opportusity for
ecologiits 1o explore population dynamical patters avera wide mage
of axa (Inchausti & Halley 2001). Analyses using data in fe GPDD
nave focused on, eg., exdncrion fsks (Fagan &r al 2001; Inchaust &
Halley 2003; Brook «f o 2106), papulasion cycles (Kendall ar ol 1998;
Murdach o al 2002 and effects of weather (Knape & de Valpine
2011) but, anguably, the stdies stiring he mast attention a5 well a5
debbate have addressed population regulation and density dependence.

These have patterms in the shape of demity depa\dsme
(Sibiy ot ol 2005; Polansky of ol 2009) and in the strength of regulation
and density dependence (Brook & Bradshaw 2006 Sibly o al 2007;

B 2011 Haclewell Publisbing Lad (MRS
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Dendty dependence can be loosely defined as a
quantitative nfvence: of population st on some life
hiztory or population it of interest. The concept is of
central imporiance to population ecology since it
detemmines both the Bmiting and the slhort time T havion
of the dynamics of populations. Empirica) estimates of
dengdty dependence are therefore important from 2
aclentific 25 well a: from 2 mansgement 1r|~=11\:1we

of density depend in the dy ol
natuwral populations has however proved io be challng-
ing (Dennds et 2. X006y,

When melevant data ane avadable, effacts of density
dependence can be directly linked 1o Bfe history traiis.
For inatance, dendty dependence in recruitment (e.g,
Crespdn et 2l 2006) and survival (e.g., Feta-Bianchet et
al. 2003} have been estimated by mark-recaptune
analyses and density depend ence in focundity has e
inferned from data on reproduction {e.g, Solbreck and
Tves M07). Dendty dependence in life hatory traits
influences density dependence in populstion growih mie
(Lande et al. 2002, T can be argeed that density
dependence in population growth is the meat imponant
fomm of density dependence for detemining long-temm
belavior of populitions. However, since the Eok from
demograp i trais to population change & almoat never
known with good precsion, density dependence in

Manucript received 12 January 2005 revised 2 June 200
accepted 12 June HME Carresponding Editar: M. Lavine.
! E-mail: jonas knape@tearekal use

ldstory data even if the el fects of densdty dependeno: on
several Bfe history traits are well known. Time serks
analyds of population abundance data provides an
alternative or complmen tary method that deslly could
serve as @ more direct way of estimating densiy
dependence in population growth rate.

Estimates of density dependence must rely on
memures of populstion densdty that are wuslly difficelt
1o obidn with preciion (Freckleton et al. 20065 This
problem i panicularly relevant to estimates of density
dependence in growth mie derived from time sedes data
on population dee in that both the dependent and the
independent variablk ame measwed with wncenainty.
Tavtoerducd ng observation eror to dynamical data chang-
e its dynamical strecture (Dennds et al 2006) and
eatimators relating to the dynamics of the data that do
nol gecount for olservation erorms are therefore oflen
bizmed. Specifically, tests and estimators of density
dependence based on time seres data am known 1o be
Idzed il o bservation ermors are present but ignored for
both dimct (Kuno 1971, Wales and Ludwig 1981,
Shenk et &l 1998, Freckleton et al. 2006) and delayed
(Solow N01) densdty dependence. An appesling method
for overcoming this difficulty is provided by the state—
apace framework (Harey 1990y, 3 penerml term for
slatistical medel of olservations of hidden siate
variables thai are dynamdcally linked through time.
For time sedes data on population abundance, state—
apace models can be wed for explict modeling of both
the olservation ad the population dynamical proosas
(Stenseth et al. 2003, Tamieson and Brooks 2004).
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Lake Washington long-term

plankton monitoring

- weekly plankton sampling 1960s to present

- environmental covariate data

- standardized sampling

* basis for lots of MAR-based research into plankton
community dynamics

Seattle

Lake Washington



Comparison of the B matrix estimates analysis of Lake WA data mid-1970s on

MARSS

R est=.02
or so
Q est=.6
or so

ORIGINAL

<~ o O b w N

<~ o U s w N

0.65 -0.08
0.36
0.34
0.064 -0.17 -0.16
0.11 0.01 0.74
0.11 -0.260 0.71 -0.15
0.06 -0.13 0.57
0.52 -0.06
0.44
0.92
0.66 -0.16 -0.12
0.23 -0.11 0.57
0.09 -0.22 0.04 -0.14
0.23 -0.27 0.52

Diatom
Green
Cyano
Cyclops
Daphnia
Diatopmis

Bosmina



Those results assumed we knew where the
zeros were. What if we don't know?

This is the same
7X7 interaction
matrix. The
distributions are
posterior
distributions. All
B elements were 8
estimated but | ¢
blocked out the
original “zeros”




A different approach to maximizing the loglL of

hidden states problems: EM algorithm

1.

Start with ©,

Compute the expectations involving X and Y conditioned on ®, and the data
3. Putthosein E, logL(Y.X;0):Y (1) =y(1).6,] and maximize with respect
to ® to get O,

Compute the expectations involving X and Y conditioned on ®, and the data
Putthose in Exvy[logL(Y.X;0);Y (1) =y(1).0,] and maximize with respect
to © to get O,

6. Repeat until convergence

N

ok

What's the point?

1) It can make certain types of model fitting problems tractable by being
considerably faster and more stable

2) For many of the problems we work on, other approaches grind to a
halt



"EM algorithms sound like fun!”

Google “MARSS cran”

@\. v (@ r-project.arg

File Edit ‘iew Faworites Tools  Help x q'_?l -

x (2N -
57 Favarites | 55

{F CRAM - Package MARSS

MARSS: Multivariate Autoregressive State-Space Modeling

The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate anf
data_ Fitting is primarily via an Expectation-Maximization (EM) algorithm, although fitting via the BEGS algorithm (using the optim {
model (DLM) and vector autoregressive model (VAR) model. Functions are provided for parametric and innovations bootstrappii|
(AICb), confidences intervals via the hessian approximation and via bootstrapping and calculation of auxilliary residuals for detecti]
for parameter estimation for a variety of applications, model selection, dynamic factor analysis, outlier and shock detection, and ad
at the R command line to open the MARSS user guide.

Version: 27

Depends: MASS, mvtnorm, nlme, time, KFAS
Published: 2011-10-23

Author: Eli Holmes, Eric Ward, and Kellie Wills, NOAA_ Seattle, USA
Maintainer: Eli Holmes <eli. holmes at noaa.gov>
License: GPL-2

In views: TimeSeries

CRAN checks: MARSS results

Downloads:

Package source: MARSS 2.7 tar gz

MacOS X binary: MARSS 2.7.tgz

Derivation of the EM algorithm for constrained
and unconstrained multivariate antoregressive
state-space (MARSS) models
DRAFT

Elizabeth Eli Holmes
Northwest Fisheries Science Center, NOAA Fisheries
2725 Montlake Blvd E., Seattle, WA 93112
elL.holmes@inoaa. gov
http:/ /faculty.washington.edu /echolmes

October 21, 2011
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Advances in Multivariate AutoRegressive
State-Space (MARSS) Models for
Analysis of Ecological Data



Finding MLE parameters for MARSS

models
Joint likelihood of y(data), x(hidden states) Loy
].(_}\g L{y;{: {—}] — —Z 3[yi, — Z;L‘f — éleI{_ll — Z;Ef — 1 E {L-; |1_{|
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* If you can compute the marginal likelihood L(y; ®), you can maximize
that (using some Newton-based method, like BFGS). optim() IinR.

* The Kalman filter will give you the marginal likelihood.

» Works great for lots of problems. But for many big multivariate
problems it doesn’t work so great.



A different approach to parameter estimation for

hidden state problems: Expectation-Maximization
algorithms

Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and
unconstrained multivariate autoregressive state-space (MARSS) models.

Tl _ bii bia| |74 4 [y [, ~ MVN ur] e g
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vy vy ar] [rin ri2 ri
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What's the point?

1) It can make multivariate AR state-space model fitting problems
tractable by being considerably faster and more stable

2) For many of the problems we work on, other approaches grind to a
halt



What are the strong species interactions? How

are environmental factors affecting species?

-0.30

-0.17
+0.22
Non-colonial Non-daphnid
rotifers cladocerans
+0.25
+0.15 +0.16
+0.21
. -0.16 Green
Oscillatoria |—____y{Cryptomonas Picoplankton Diatoms algae
+0.06 -0.90

Total Phosphorus

S.E. Hampton, NCEAS, UCSB Hampton, Scheuerell, & Schindler 2006



Written in matrix form:

The effect of species 1 on species 2

covariates

Xt 1+ 11 a , a3 X1t U, Cii G ! 0 \ W
111

Xot |5 o1 1"‘“2,2 Oz || Xpeg [T Uy TGy Gy {U ]" W,
2t-1

| K3t | | P31 s 1+0‘3,3__X3,t—1_ | Us | ',C3,1 Csz | W |

\ y \ y )
Y

B = interaction matrix covariate effect

The effect of covariate 1 on species 1 Environmental variation
(not from covariates)



Autoregressive process noise

r_ / o
x;, =Bx;,_,+u +1n,

where 1, is a AR-1 (or p) process.

We re-write this as a MARSS(1) model by
moving the error term into the state process

X; = Bx;_1 +u+ w;, where w; ~ I\--IVN([L Q)

x| |B: L, X u’ ~ {00
)= Lo m) [, (6] # e w05 g )



So...if MARSS models have such a history, can't

you just use finance algorithms?

Existing methods dealt with this
* Gappy data, observation error. non-ideal covariate
data

But
« Parameter estimation based on Newton methods
which struggle with general MARSS models.

Goal
Develop a general robust algorithm for constrained
MARSS models based on Expectation-Maximization

algorithms

Holmes, E. E. 2010, 2012. Derivation of the EM algorithm for constrained
and unconstrained multivariate autoregressive state-space (MARSS)

models.



What are the effects of observation error on

estimates of large B matrices?

-0.30
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