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Complexity is costly: a meta-analysis of parametric and  
non-parametric methods for short-term population forecasting
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Short-term forecasts based on time series of counts or survey data are widely used in population biology to provide advice 
concerning the management, harvest and conservation of natural populations. A common approach to produce these 
forecasts uses time-series models, of different types, fit to time series of counts. Similar time-series models are used in many 
other disciplines, however relative to the data available in these other disciplines, population data are often unusually short 
and noisy and models that perform well for data from other disciplines may not be appropriate for population data. In 
order to study the performance of time-series forecasting models for natural animal population data, we assembled 2379 
time series of vertebrate population indices from actual surveys. Our data were comprised of three vastly different types: 
highly variable (marine fish productivity), strongly cyclic (adult salmon counts), and small variance but long-memory 
(bird and mammal counts). We tested the predictive performance of 49 different forecasting models grouped into three 
broad classes: autoregressive time-series models, non-linear regression-type models and non-parametric time-series models. 
Low-dimensional parametric autoregressive models gave the most accurate forecasts across a wide range of taxa; the most 
accurate model was one that simply treated the most recent observation as the forecast. More complex parametric and 
non-parametric models performed worse, except when applied to highly cyclic species. Across taxa, certain life history 
characteristics were correlated with lower forecast error; specifically, we found that better forecasts were correlated with 
attributes of slow growing species: large maximum age and size for fishes and high trophic level for birds.

Short-term forecasts are used widely in population biology – 
fisheries biologists forecast commercially valuable species 
to inform harvest levels and to evaluate management  
strategies, conservation biologists use forecasts to evaluate 
the extinction risks for threatened species, and theoretical 
biologists rely on forecasts to test predictions of population 
responses to perturbations. The challenge, particularly  
with limited data, is how should predictions be made? In 
an infinite data universe, a mechanistic model could be 
constructed from first principles, incorporating population-
specific biological information such as age-structured  
survival or fecundity rates, spatial structure or habitat 
information, species interactions, and sex-ratios (Hilborn 
and Walters 1992, Buckland et al. 2004, Newman et al. 
2006). In data limited situations, however, there is little 
data to inform the nature of the complexity. A more  

common approach, taken in data-limited situations, is that 
population biologists apply non-mechanistic approaches to 
characterize patterns in the data. Types of patterns include 
trends, cycles, and variability. The statistical time-series 
models used in this non-mechanistic framework do not 
have a direct relationship to biological mechanisms, 
although they may be related to biological processes, such 
as population growth, survival, or density dependence.

Forecasting using this non-mechanistic approach has 
evolved over the last 50 years, but in population biology, the 
most commonly used models represent a small subset of sta-
tistical forecasting models available and used in other disci-
plines. To explore forecasting performance over a wide 
range of statistical models from the time-series modeling 
literature and to study which classes of models are best for 
the short-term prediction of population data, we adopted 
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Evaluating the data support for multiple plausible models has been an integral focus of many ecological 
analyses. However, the most commonly used tools to quantify support have weighted models’ hind-
casting and forecasting abilities.
For many applications, predicting the past may be of little interest. Concentrating only on the future 
predictive performance of time series models, we performed a forecasting competition among many 
different kinds of statistical models, applying each to many different kinds of vertebrate time series of 
population abundance. Low-dimensional (simple) models performed well overall, but more complex 
models did slightly better when applied to time series of cyclic species (e.g. salmon).
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an inter-disciplinary approach, drawing from statistical 
methods familiar to biologists and also approaches more fre-
quently used in other fields. We assembled a large database 
of natural population time series to evaluate the real-world 
predictive accuracy of three large classes of statistical time-
series models: autoregressive time-series models, non-linear 
regression models and non-parametric time-series models.

Autoregressive integrated moving average (ARIMA) mod-
els have a long history in time-series analysis and have been 
widely used for population forecasting (Dennis et al. 1991, 
Holmes et al. 2007, Ives et al. 2010). Important variants of 
ARIMA models include AR models, such as stochastic expo-
nential growth models and Gompertz density–dependent 
models, state-space models and correlated error models. 
State–space models separate the total variance into process 
and observation error components, yielding more precise 
estimates of the hidden true states of nature (e.g. abundance, 
vital rates) when the data include high observations or error 
(Lindley 2003, Holmes et al. 2007). ARIMA models with 
correlated errors allow the temporal deviations to be tempo-
rally dependent or smoothed in different ways (Ives et al. 
2010). Regardless of how errors are modeled, all ARIMA 
models assume that the states of nature at two points in time 
separated by a time lag p are linearly related to one another. A 
variety of natural phenomena can lead to more complex lag 
structures, including interactions within- and between-spe-
cies (May 1977, Sugihara and May 1990), age-structured 
demography (Gurtin and Maccamy 1974), variable sex ratios 
(Hassell et al. 1983), extrinsic forcing factors such as human 
disturbances, or non-linear responses of species to a changing 
environment (Higgins et al. 1997, Bjornstad and Grenfell 
2001). The second class of models we examined, non-linear 
regression, provides an approach for fitting a flexible model 
without specifying a linear form for the lag structure. Two 
types of non-linear regression models were included in this 
class: generalized additive models (GAMs; Wood 2006) and 
local regression models (e.g. ‘loess’; Cleveland and Devlin 
1988). The third class of models we examined, non-paramet-
ric time-series methods, treats complex lag-structure in data 
by allowing the lag structure to have a non-linear and non-
parametric form. Several non-parametric time-series models 
were included in this class: projection models (Sugihara et al. 
1990, Sugihara and May 1990), neural networks (Lek et al. 
1996), kernel regression, Gaussian process models and ran-
dom forest regression (Cutler et al. 2007).

The properties of these parametric and non-parametric 
time-series methods have been studied using data from other 
disciplines (reviewed by Stock and Watson 1999, De Gooijer 
and Hyndman 2006). However, time-series data in the bio-
logical sciences present a unique set of challenges. First, popula-
tion data are relatively short (typically  25 data points; Collen 
et al. 2009) compared to the thousands of data points in finan-
cial, environmental and engineering time series. Second, popu-
lation data are influenced by the presence of observation errors, 
resulting from uncertainty in measurement, sampling and 
detection rates. Unlike other fields, it is often difficult to con-
duct replicated survey experiments that could be used to esti-
mate the observation error variance. As a result, the magnitude 
of the observation error variance is generally unknowable.

The first objective of our study was to use a meta-analysis 
framework to compare the short-term forecasting performance 

of parametric and non-parametric univariate models using our 
dataset of 2379 vertebrate population counts and indices. Large 
datasets of population time series have been used to evaluate 
population dynamics questions (for example, Hilborn and  
Liermann 1998, Knape and de Valpine 2012) and meta-analyses 
of forecasting performance have been performed in other fields 
(Stock and Watson 1999), but to date, no large-scale forecasting 
meta-analysis has been carried out for ecological data, with the 
exception of Stergiou and Christou (1996), who compared 
methods for predicting fisheries catches. However, catches 
may not translate well to forecasts at the population level 
because catches reflect a combination of population abun-
dance, market prices, and the behavior of fishers. For similar 
reasons, extending meta-analysis results from other fields to 
ecological data is difficult because different modeling 
approaches perform differently for different types of data. For 
example, Toth et al. (2000) found that in predicting rainfall, 
neural network time-series models offered an advantage over 
ARIMA models, while the opposite appears to be true for 
macroeconomic data (Stock and Watson 1999). A further 
complication of previous meta-analyses is that as methods 
have evolved, older published studies include only a subset of 
the tools and models currently available.

The second objective of our analysis was to examine cor-
relations between forecast accuracy and biological or  
statistical covariates (life-history characteristics, time-series 
length and variability). For example, our expectation  
was that longer time series with low levels of variation are 
associated with forecasts with low errors. We first explored 
this question on a taxonomic level and looked at whether 
certain classes of forecasting models work particularly  
well for particular taxonomic classes of organisms (birds, 
mammals and fish). We then used a subset of our time  
series for which we had detailed biological covariates and 
explored whether certain attributes of species’ life histories – 
such as growth rate, age at maturity, mean adult size or 
weight, trophic position – make the abundance of these  
species easier to forecast. Such an analysis can guide biolo-
gists towards those forecasting models that tend to perform 
better for particular taxa.

Methods

Time-series data

We compiled a database of 2379 univariate time series of 
aquatic and terrestrial vertebrates worldwide (Table 1). Only 

Table 1. Summary of time series datasets included in the meta-analysis.

Dataset Time series Organism Source

US BBS bird 414 birds Sauer et al. 2011
UK RSPB bird 61 birds Risely et al. 2012
LPI 1162 birds, fish, 

mammals
Loh et al. 2005,  

Collen et al. 2009
RAM Recruits/

spawner
214 fish Ricard et al. 2011

WA, OR 
salmon

44 fish Ford et al. 2010

CA salmon 155 fish Holmes and Fagan 
2002

BC salmon 90 fish Dorner et al. 2008
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time series with at least 25 continuous observations (no 
missing values) were included. Most of the time series were 
population counts or indices of abundance, but we also 
included time series of marine fish production (recruits  
per spawning stock biomass) in our database. We assembled 
bird and mammal abundance time series from the Living 
Planet Index (LPI) Database, the North American Breeding 
Bird Survey (BBS), and the Royal Society for the Protection 
of Birds (RSPB), salmon spawner abundance data from pub-
lished literature (Holmes and Fagan 2002, Dorner et al. 
2008), the National Marine Fisheries Service (Ford 2011) 
and StreamNet, and marine fish productivity from the RAM 
Legacy database (Ricard et al. 2011). Time series were  
filtered to only include those collected from a consistent  
survey of some type.

The LPI Database (Loh et al. 2005, Collen et al. 2009) is 
a database of worldwide population time series, collated 
from published scientific literature and other global data-
bases, especially the Global Population Dynamics Database 
(NERC Centre for Population Biology 2010) and the  
Pan-European Common Bird Monitoring Scheme  
(Pan-European Common Bird Monitoring Scheme 2011). 
The North American BBS (Sauer et al. 2011, Risely et al. 
2012) is monitoring program by the US Geological Survey’s 
Patuxent Wildlife Research Center and Environment  
Canada’s Canadian Wildlife Service. It provides regional 
population estimates from standardized roadside route  
surveys for North American breeding birds. The RSPB 
breeding bird data were compiled by the RSPB from data 
collected by the Statutory Conservation Agencies/RSPB 
annual breeding bird scheme, the Rare Breeding Birds  
Panel, and RSPB’s own bird monitoring programs. These 
data consist of estimated population sizes for 61 rare or 
scarce breeding bird species in the United Kingdom based 
on censuses of known breeding sites. Our Pacific northwest 
salmon data consist of yearly spawner counts of chinook 
(Oncorhynchus tshawytscha), pink (O. tshawytscha), chum  
(O. keta), coho (O. kisutch) and sockeye salmon (O. nerka) in 
British Columbia, Canada and Washington, Oregon, and 
California, USA collected as part of state and provincial 
monitoring programs. The RAM Legacy database includes 
time series of fish biomass and productivity (recruits/ 
spawning stock biomass) for marine fishes around the  
globe. We only included productivity time series in our data-
base because the RAM Legacy adult spawning biomass time 
series are smoothed output from stock assessment models.

Biological covariate data

To test whether certain groups of species are more predict-
able than others, we assembled biological covariates for spe-
cies in our three largest datasets: marine fish productivity, 
bird counts and salmon abundance. For species in the 
marine fish productivity dataset, we assembled maximum 
age, mean adult length, relative weight, and trophic level 
information from RAM Legacy and FishBase (Froese and 
Pauly 2000). Relative weight is a proxy for the girth of  
each species, calculated as the residuals of log length-log 
weight regressions. Weight by itself was not included as a 
covariate because weight and length are highly correlated. 
For the bird species in the BBS, RSPB and LPI datasets, we 

assembled mean adult weight, generation length, and 
trophic level information from the LPI database and Bird-
Life International. For the database of adult salmon counts, 
we assembled mean length of spawning adults and trophic 
level for each species from FishBase (Froese and Pauly 2000).

Time-series models

We tested the forecasting performance of 49 univariate time-
series models. These models can be classified into three 
groups: ARIMA models, regression models and non-para-
metric models. We summarize the models below and more 
details, including the R functions to implement each model, 
are available in the SI.

1. ARIMA models
ARIMA stands for autoregressive integrated moving  
average and is a model that combines autoregressive (AR), 
differencing (I), and moving average (MA) components.  
An AR model of logged-abundance (Yt ) takes the form

Y bY b Y b Y et t t q t p t      1 1 2 2 …

A MA model is similar but instead of Y being autoregressive, 
the error term (et) is modeled as autoregressive. A model  
that combines both AR and MA components is ARMA,  
and if the differences (Yt 2 Yt21, Yt 2 Yt22, etc.), rather than 
Y, are treated as the response, the result is an ARIMA model. 
All of these models can be written in ARIMA(p, d, q)  
form in terms of three parameters: p, the number of auto-
regressive terms, d, the degree of differencing, and q, the 
number of moving average terms. See Ives et al. (2010) for a 
discussion of ARIMA models used in ecology and the SI  
for more details.

The most basic ARIMA model we considered was a  
random walk model, denoted ARIMA(p  0, d  1, q  0), 
with and without drift. We also considered state-space  
versions of these models (Holmes 2001, Lindley 2003,  
Holmes et al. 2007), which include an observation model in 
addition to the process model. Potentially unrealistic 
assumptions made by the simple random walk are that  
1) the mean trend is constant through time, 2) stochastic 
fluctuations through time are independent and temporally 
uncorrelated, and 3) that population change is not  
density-dependent. To relax assumptions 2) and 3), we fit a 
range of different ARIMA models to include temporally 
correlated errors and mean-reversion (density-dependence). 
Random walks with density-dependence (Gompertz random 

Table 2. Regression parameters that have negative effects are  
associated with reduced MASE (improved forecasts over random 
walks). Regression coefficients are shown, with standard errors  
in parentheses. The quantity s sobs pro

2 2/  represents the ratio of  
observation to process variance, s 2 represents the total variance of 
the time series deviations (Yi11 2 Yi) within the training data,  
and ρ  represents the square root of the lag-1 autocorrelation in 
the raw training data.

Fish Birds

ln (age) 20.187 (0.111) Trophic level 20.092 (0.050)
ln (length) 20.282 (0.152) Ln (s2) 0.065 (0.187)
ln ( s sobs pro

2 2/ ) 20.012 (0.003) ρ 20.248 (0.117)
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the fitting process for stationary ARIMA models (but the 
trend was included in model forecasts). The models were fit 
to the entire time series minus the last five time steps; this is 
the ‘training’ data. The last five time steps were held out to 
gauge predictive performance. All models were fit in R using 
add-on packages; code and functions are provided in the  
SI. From the fitted models, we forecasted the next 1 to  
5 years using the prediction functions supplied with the  
corresponding R packages (or our own function for S-MAP 
and Simplex projection).

Evaluation of forecast performance

Though forecast performance can be improved in some situ-
ations with ensemble forecasting from multiple models 
(Newbold and Granger 1974, Raftery et al. 2005) or by com-
bining information across time series (Hsieh et al. 2008, 
Ward et al. 2010), our goals were to evaluate the performance 
of individual models and to identify which models (or model 
classes) are best on average across large datasets, following the 
approach of (Geweke et al. 1983). Model performance in 
prediction (or explanation) can be viewed through the lens of 
the bias-variance tradeoff: error  variance 1 bias2 1 irreduc-
ible error, where bias decreases and variance increases with 
model complexity, and irreducible error represents the unex-
plained variation (Burnham and Anderson 2002). When 
comparing the performance of multiple models across mul-
tiple time series from diverse environments and taxa, scale 
invariant metrics need to be used because different time series 
have different scales of variation. Thus, scale-dependent met-
rics like root mean square error (RMSE) should not be used 
(Hyndman and Koehler 2006). A variety of scale-invariant 
measures of forecasting accuracy exist. We used the mean 
absolute scaled error (MASE) recommended by (Hyndman 
and Koehler 2006). MASE allows comparison of predictive 
accuracy across datasets with different scales of variation and 
is less sensitive to extreme values and outliers.

For a single time series, the absolute scaled error  
(ASE) for a prediction Y t  at time t after the training data  
(the portion of the time-series used for fitting) is

ASE
12

t
t t

i ii

n

Y Y

n
Y Y





 



1
1 ∑

where Yt is the observed value at time-step t (1 to 5) after the 
end of the training data (Hyndman and Koehler 2006). ASE 
values are calculated independently for each forecasting 
model. The absolute error is scaled by the mean absolute

error within the training data, 
1

1n
Y Yi ii

n


  12∑ ,  where 

Yi is the i-th observation within the training data and n is  
the number of training observations. To calculate MASEt  
for a given model the ASEt values from all time series are 
averaged. A general property of MASE is that as time- 
series length increases, forecasts using a random walk  
without drift will converge to a MASE of 1. For short time 
series, such as those used here, the same random walk model 
will produce MASE values higher than 1, because the  
small-sample mean absolute error (the denominator in the 
ASE equation) is an estimate of the large-n mean absolute 

walks; Dennis et al. 2006), are ARIMA(1,0,0) with a 
 constant, random walks with autocorrelated errors are 
ARIMA(1,1,0), random walks with smoothed errors (MA) 
are ARIMA(1,0,1), and exponentially smoothed time  
series (Hyndman et al. 2002) are ARIMA(0,1,1). We fit a 
range of ARIMA models, varying p, d and q from 0 to 2.  
All models are listed in Table 2 in the Supplementary  
material Appendix 1. Finally to relax assumption 1), we fit 
stochastic level models with the random walk drift para-
meter itself modeled as a random walk.

2. Linear and non-linear regression
We explored three types of parametric regression methods. 
The first was simple linear regression of logged abundance or 
productivity against time with temporally uncorrelated errors. 
Using a moving average model, ARIMA(0,0,1), we also fit a 
linear regression with autocorrelated errors. Second we fit local 
regression models (Cleveland and Devlin 1988), which fit 
local polynomial models to a specified number of neighboring 
data points. Lastly, we evaluated non-linear regression using 
GAMs (Wood 2006) with the degree of smoothness selected 
by cross validation. GAMs model the expected value of a data 
point as a function of a link function and splines, whereas 
local regression uses a moving window approach to sequen-
tially fit polynomial splines to batches of data. All parametric 
models were fit with Gaussian errors to log transformed data.

3. Non-parametric methods
We tested a variety of non-parametric methods: kernel 
regression, neural networks, Gaussian process models,  
projection models and random forest regression. Non- 
parametric kernel regression models use a kernel function to 
weight the importance of neighboring points. Neural net-
work time-series methods (Toth et al. 2000, Thrush  
et al. 2008) estimate ‘hidden layers’ as the sum of logistic-
transformed inputs to relate historical observations to future 
states (we considered up to three hidden layers). Gaussian 
process models estimate the covariance between pairs of 
neighboring observations but do not impose a parametric 
form for the errors nor a specific lag structure. A related non-
parametric approach is projection methods (S-MAP and 
Simplex projection) which map the response value Yt as a 
function of lagged abundances, Yt21, Yt22, …. S-MAP  
(Sugihara 1994) and Simplex projection (Sugihara et al. 
1990) have been successful at forecasting non-linear ecologi-
cal time series (Hsieh et al. 2008, Glaser et al. 2011).  
Simplex uses only a few neighboring points to make predic-
tions, while S-MAP uses a distance-weighting method. We 
implemented both approaches while automatically selecting 
the lagging dimensions for each. As a final method, we tested 
random forest regression (Cutler et al. 2007), which uses 
lagged abundances as the predictors and uses decision trees 
to optimize the predictive ability. Lagged abundances at 1 to 
5 time steps were used as predictors and automatically 
selected from decision trees with up to 5 nodes.

Model fitting and projection

Each time series was log-transformed to achieve approximate 
normality and to account for population growth being a 
multiplicative process. Time series were detrended as part of 
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statistic (Hyndman and Koehler 2006). This metric allows 
forecast accuracy for different datasets to be compared  
on a similar scale and combined into a single number, thus 
allowing us to evaluate forecast performance integrated over 
multiple time series. Examining MASE across taxonomic 
groups (birds, marine fish productivity, salmon counts, 
mammal abundance), we found that GAMs and low dimen-
sional ARIMA models (of various types including AR  
and ARMA, but excluding pure MA models) produced 
short-term forecasts with the best predictive accuracy. No 
particular ARIMA model stood out; rather, the well- 
performing ARIMA models were characterized by simplic-
ity (few estimated parameters) and a strong connection 
between the forecast and the last observed value. The  
worst performing methods included linear regression, neu-
ral network models, S-MAP projection and local regression 
(Fig. 1). Although GAM and simple ARIMA models per-
formed best, their MASE statistics were similar to that of a 
random walk without drift (the baseline model) for birds, 
mammals, and marine fish productivity, and their predic-
tions became steadily worse for 2, 3 and 4 time steps for-
ward (Fig. 1). ARIMA models only outperformed the 
baseline random walk when applied to data from highly 
cyclic salmon species. For some salmon species, 2- and 
4-step ahead forecasts were just as good as 1-step ahead  
forecasts (Fig. 2). These results were particularly true for 
pink and sockeye salmon – species whose life histories cause 
regular population cycles with even-numbered periods. For 
these two cyclic species, some non-parametric methods (e.g. 
Simplex projection and random forest regression) did as 
well as the ARIMA models (Fig. 2), presumably because 
they capture the lagged structure in the time series. While the 
ARIMA models in Fig. 1 do not include lags greater than 1, 
they are able to model lag-2 cycles via negative autocorrela-
tion between t and t – 1. Detailed results for all models are 
given in the Supplementary material Appendix 1 Table A2.

Results from our analysis of covariates and forecasting 
performance identified biological and statistical covariates 
associated with better forecasts (lower errors), however the 
covariates selected depended on the taxa. For the marine fish 
productivity dataset, we found that species with larger maxi-
mum lengths and larger maximum ages were associated with 
improved forecasts (Table 2). In terms of the biological effect 
size, we found the effects of length and maximum age to be 
equivalent (Fig. 3). We also found that an increasing ratio of 
observation to process variance was correlated with lower 
forecast error – meaning that when observation variance con-
tributed a larger proportion of the total variance, the relative 
influence of process variance was smaller, and the forecasts 
tended to have lower error (relative to the variance in the 
time series). For the bird dataset, the only biological variable 
associated with better forecasts was trophic level; the positive 
relationship indicates that higher trophic level species in our 
dataset were associated with lower forecast errors. Two statis-
tical covariates were also associated with better forecasts for 
birds: decreased total variance in the time series and increased 
autocorrelation (Table 2). No significant biological or statis-
tical predictors were found for the combined salmon data-
sets, possibly because the small number of species included 
(five) provided low resolution. Although these results are for 
forecasts from the GAM model, we found similar covariates 

error. Thus, with short time series, we compare MASE  
values to the MASE from the random walk without drift 
model (termed ‘RW-MASE’). This will be some value greater 
than 1 for short time series. When a model has a MASE less 
than RW-MASE, it indicates that 1) there is structure in  
the data beyond that implied by a single random-walk pro-
cess and 2) the model successfully models that structure to 
give a better forecast. MASE values higher than RW-MASE 
indicate that the model is either over-fitting the data or  
fitting an improper model to the data.

We computed MASE for 1- to 5-step ahead predictions. 
For each model and each time series, we predicted the future 
values of the times series at t  1 to 5 past the end of  
the training data, giving us Y Y 1 5, ,… . With these and the 
observed values, Y1,…,Y5, we computed the ASE and MASE 
statistics for each model.

Identifying covariates useful in prediction

We conducted a secondary analysis to explore which  
statistical and biological covariates were correlated with  
better predictive accuracy (lower ASE values). For this analy-
sis, we used only time series for species with covariate informa-
tion: birds (n  890) from the BBS, RSPB and LPI datasets, 
marine fish (n  133) from the RAM Legacy productivity 
dataset, and salmon (n  289) from our combined salmon 
dataset. In addition to biological covariates, we included the 
following descriptive statistics as covariates: time-series length, 
variance of the lag-1 differences, lag-1 autocorrelation (calcu-
lated as the ACF of differenced observations), mean trend, cur-
rent abundance relative to the maximum observed (a measure 
of depletion), and the ratio of observation to process variance 
as estimated by a state-space random walk with drift model.

For the response variable, we used the natural log of the 
average ASE statistic from the GAM model for forecasts 1 to 
3 time steps ahead:

ASE
3

1

3

12







 





Y Y

n
Y Y

t t
t n

n

i ii

n

∑
∑1

1

Here,  Yt is the estimate for time t from the GAM model fit 
to a single time series and Yt is the actual observed value at 
time t. ASE values 1 to 3 time steps ahead were averaged 
because using an ASE value for one time step alone is highly 
sensitive to outliers. Using ASE  reduced the effect of outlier 
values. We show the results using the ASE  values using  
Y t  from the GAM model, however we did the analysis with 
ASE  computed with Y t  values from the ARIMA models, 
and results were similar. Separate linear regressions of covari-
ates against ASE  were used for the bird, marine fish  
pro ductivity, and salmon time series to prevent results  
from being dominated by the taxa with greater sample size. 
Stepwise regression with AIC as a model selection tool was 
used to identify covariates with higher explanatory power.

Results

We summarized the forecast accuracy of different classes of 
models using the mean absolute scaled error (MASE)  
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Marine fish productivity Salmon

Birds Mammals

Figure 1. Natural log of MASE statistics for 13 models, for prediction at t  1 to 4. ‘Reg’  ordinary least-squares regression, ‘MA’   
moving averaged errors ARIMA(0,0,1), ‘RW’  random walk without drift, ‘ARMA’  ARIMA(1,0,1) with a constant, ‘Exp’   
exponentially smoothed ARIMA(0,1,1), ‘ARcor’  AR model with temporally correlated errors (ARIMA(1,1,0)), ‘ArSS’  state-space  
RW with drift model, ‘GAM’  generalized additive model, ‘Loc’  weighted local regression, ‘NN’  neural network model, ‘SMAP’   
distance weighted non-parametric prediction, ‘Smp’  Simplex, ‘RF’  random forest. Horizontal dashed lines correspond to the  
MASE from the RW model without drift (RW-MASE). Number of time series for each dataset: n  214 (marine fish), n  289 (salmon), 
n  1322 (birds), n  46 (mammals). These models shown were selected to summarize the overall behavior for model classes. The results 
for all individual models are in the Supplementary material Appendix 1 Table A2.

when we used forecasts from the ARIMA models. This is  
not surprising since the forecasts (and ASE or MASE  
values) from the GAMs and ARIMA models are correlated.

Discussion and conclusions

Historically, the majority of ecological time series analysis has 
focused on identifying explanatory processes (competition, 
density dependence, Allee effects). These model selection 
analyses have used statistics such as type I error rates, or 
model selection tools like AIC to identify models that bal-
ance the explanatory ability of models with predictive  
ability (this is the principle the parsimony; Burnham and 
Anderson 2002). Less work has been done to investigate  
the predictive or forecasting ability of statistical models in 
ecology. Short-term forecasts are becoming widely used  
in population biology, and in this paper, we sought to iden-

tify specific classes of models that 1) are flexible enough to 
fit a range of population processes, from declines to  
density dependence, and 2) have low prediction error. These 
characteristics are particularly important for species at risk, 
or species that are commercially valuable (such as fish popu-
lations). In data-rich situations, population forecasts might 
be improved by including biological mechanisms and 
dynamics (though including mechanisms may also yield 
worse fits; Perretti et al. 2013). In data-poor situations, a 
time series of estimates of abundance or biomass is often the 
only information available. An ever-increasing array of 
modeling approaches can be used to make short-term fore-
casts using only time-series data and have been used in  
other disciplines, however the performance of these 
approaches may be quite different for animal population 
data given its typically noisy and short nature. Our meta-
analysis of vertebrate time series included species from 
aquatic and terrestrial ecosystems and diverse data types: we 
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O. tshawytscha

O. gorbuscha O. keta
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Figure 2. Natural log of mean absolute square error (MASE) statistics for 13 models, applied to different time series of salmon over  
prediction intervals 1 to 4. See Fig. 1 for the model descriptions for the model acronyms on the x-axis. Horizontal dashed lines correspond 
to the MASE from the RW model. Number of time series for each species: n  28 (pink, O. gorbuscha), n  40 (chum, O. keta), n  5 
(coho, O. kisutch), n  61 (sockeye, O. nerka) and n  183 (Chinook, O. tshawytscha).

included highly variable data (marine fish), low variability 
data (birds, mammals), data with cyclic dynamics (salmon 
counts), and data across a gradient of species longevity.

For forecasting species without strong cyclic dynamics 
(birds, mammals, marine fish), we found the best perform-
ers to be GAMs and ARIMA models, which includes ran-
dom walks with drift, models with temporally correlated or 
smoothed errors, state-space models, and ARIMA models 
with a lag-1 correlation. However, averaged over all non-
cyclic species, both small and short-lived and large and 
long-lived, the ‘best’ models for these non-cyclic species 
only did as well or slightly better than a random walk  
without drift (Fig. 1, Supplementary material Appendix 1 
Table A2). Effectively, this means that the forecast involving 
the fewest estimated parameters, which effectively simply 
uses the last observation at time t, was the best prediction of 
the value of the population at time t 1 k (k  1:5). This 
highlights the cost of trying to estimate even the trend 
(drift), much less more complex lag structure, when  
using short, noisy time series with unknown levels of  
observation error. That these models did not strongly out-
perform the baseline random walk without drift was  
surprising since time series from all taxa in our analysis 
showed evidence for a lag-1 negative autocorrelation  

(Fig. 4). Such negative autocorrelation is common in popu-
lation data and can be generated by age-structured demog-
raphy (especially for semelparous species, such as salmon), 
sex-ratios, density-dependence, and observation errors. 
However for short time series, we found that estimation of 
these lag terms is very costly, much like Ives et al. (2010) 
found, and that estimation of the observation error vari-
ance also comes at a high cost, an issue also discussed by 
Holmes et al. (2007). In the context of bias-variance 
tradeoff, these more complex models might fit a training 
dataset well, but will have low predictive power when 
applied to out of sample data (Burnham and Anderson 
2002).

The other models types, other than ARIMA and  
GAMs, however, did considerably worse than baseline ran-
dom walk without drift (and worse that ARIMA and GAM 
models). Linear regression and neural network models did 
especially poorly, likely due to the fact that their forecasts  
are not tied directly to the last observation. S-MAP, Simplex 
and random forest regression also did poorly for birds, mam-
mals and marine fish, possibly because these methods  
are more data intensive as they involve sampling from the 
lag-p differences in the data and thus may be especially 
affected by low sample size.
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Figure 3. Biological effects of covariates (Table 2) that were correlated with changes in the absolute scaled error (ASE) statistic from the GAM 
model, averaged over forecasts of 1 to 3 time steps. The expected improvement in ASE is calculated as the ASE statistic divided by the ASE 
statistic at the mean of each covariate (e.g. mean trophic level of 2.5 for birds), 100  ASEt/ASEx–. The solid line represents the expected value, 
and the shaded region represents the 95% confidence intervals. The darkness of the gray scale is proportional to the normal density.

For the salmon time series, in contrast, we found that all 
ARIMA models outperformed the baseline random walk 
without drift. Time series of adult salmon abundance are 
often characterized by strong and regular cyclic patterns, 
producing negative correlation in the lag-1 errors. When  
we looked at the individual salmon species, we saw that the 
better performance of the ARIMA models was driven mainly 
by better performance for pink, sockeye, and chum salmon. 
Though patterns vary regionally, these three species are  
characterized by regular cyclic behavior (Ruggerone et al. 
2010). GAMs, neural networks, Simplex and random forest  
models also did especially well for these cyclic species, though 
these same models performed worse than the baseline ran-
dom walk when applied to less cyclic salmon species. The 
unusually good performance of neural networks, Simplex 
and random forest models for species with strong cycles 
highlights the ability of these non-parametric approaches to 
model complex structure in data.

Most of the results from our analysis of biological  
covariates associated with better prediction match intuition; 
across taxa, bird and mammal population abundance was 
generally forecasted with better accuracy than fish abundance 
or productivity (Fig. 3), and within taxa, species that are 

larger, older, or occupy higher trophic levels are  
generally easier to predict than smaller, fast growing species 
(Table 2). Smaller species, such as sardine or anchovies in our 
data, are conventionally associated with more r-selected life 
history types and more eruptive population dynamics. The 
average 1- to 3-step ahead ASE statistics were larger for these 
species, suggesting that a random walk with no drift would 
provide as good of a forecast as any more complicated model. 
However, for species that were larger, were at a higher trophic 
level, or had larger maximum ages, use of a GAM or any of 
the low-dimensional ARIMA models improved forecasts. 
This suggests that low-dimensional models could also pro-
vide better than random-walk forecasts for the non-cyclic 
species but in general only for the subset of these species with 
larger size and higher trophic level.

The baseline model used in our analysis was a simple ran-
dom walk without drift. For this model, the t-step ahead 
forecast is simply the last observed value. No additional 
model parameters are estimated for the actual forecast, 
though the calculation of the ASE (the prediction error)  
uses an estimate of the total variance (as do all models). 
The failure of the more complicated time-series models to 
provide short-term predictions with lower error than the 
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Figure 4. Distribution of autocorrelation values for each of the datasets included in our meta-analysis. These values represent the  
ACF at lag 1 of differenced values.

random walk without drift emphasizes 1) the cost of estimat-
ing parameters in the face of noise and 2) the cost of basing 
short-term predictions on parameters, like the trend over the 
whole time series, which may be more associated with long-
term dynamics rather than short-term behavior. For short 
population time series, we can recommend the use of more 
complex forecasting models only when time series have 
strong internal structure (e.g. the cyclic dynamics in salmon) 
or have lower variability and higher temporal autocorrela-
tion (larger species with higher maximum ages or higher 
trophic level). In summary, fitting models with many param-
eters and the flexibility to model complex structure may be 
tempting, but this involves estimating structure from few 
data points. We found that estimation of even one or two 
parameters imposes a high cost with little benefit for short-
term forecasts of population abundance for species without 
obvious cyclic population dynamics.
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