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Abstract: Identifying how social organization shapes individual behavior, survival, and fecundity of an-

imals that live in groups can inform conservation efforts and improve forecasts of population abundance,

even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical

Bayesian model to quantify the relative variability in survival rates among different levels of social organi-

zation (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer

whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-

specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent

among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences

in survival between pods may be caused by a combination of factors that vary across the population’s range,

including reduced prey availability, contaminants in prey, and human activity. Our modeling approach

could be applied to demographic rates for other species and for parameters other than survival, including

reproduction, prey selection, movement, and detection probabilities.
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Efectos de Niveles Múltiples de Organización Social sobre la Supervivencia y Abundancia

Resumen: La identificación de la forma en que la organización social moldea el comportamiento, la su-

pervivencia y fecundidad individual de animales que viven en grupos puede informar a los esfuerzos de

conservación y mejorar los pronósticos de abundancia poblacional, aun cuando no se conozca el mecanismo

responsable de las diferencias a nivel de grupo. Construimos un modelo Bayesiano jerárquico para cuan-

tificar la variabilidad relativa en las tasas de supervivencia entre diferentes niveles de organización social

(matriĺıneas y agrupaciones) de una población en peligro de ballenas asesinas (Orcinus orca). Las ballenas

individuales a menudo participan en actividades grupales como compartición de presas y caceŕıa cooper-

ativa. Las probabilidades estimadas de supervivencia por edades espećıficas y las curvas de supervivencia

difirieron considerablemente entre grupos y en menor medida entre matriĺıneas (dentro de los grupos). En

todos los grupos, los machos tuvieron menor esperanza de vida que las hembras. Las diferencias en super-

vivencia entre grupos pudo deberse a una reducción en la disponibilidad de presas, contaminantes en las

presas y actividad humana. Nuestro método de modelado podŕıa ser aplicado a las tasas demográficas de

otras especies y para parámetros distintos a la supervivencia, incluyendo reproducción, selección de presas,

desplazamiento y probabilidades de detección.

Palabras Clave: ballena asesina, Bayesiano jerárquico, dinámica poblacional, efectos aleatorios, organización
social, selección de modelos
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Introduction

Some species have a hierarchical social organization, such
as family, extended family, social group, subpopulation,
and population. Social organization affects individual be-
haviors, habitat use, diet, and ultimately individual sur-
vival and reproduction (Parrish & Edelstein-Keshet 1999;
Krause & Ruxton 2002). Because demographic rates re-
spond to social organization, the growth and probability
of persistence of a population with hierarchical social
organization is determined by group-level rather than
average individual survival and reproduction (Brault &
Caswell 1993; Courchamp et al. 1999; Purvis et al. 2000).
Commonly used software packages for population viabil-
ity analysis, such as ALEX (Possingham & Davies 1995)
and VORTEX (Lacy 1993), can explicitly include demo-
graphic differences among groups. But to include such
information, one needs to identify which levels of so-
cial grouping affect demographic rates and differences in
those rates among social groups.

Discerning the extent to which group membership af-
fects survival of an individual is often difficult because
slight differences among groups may be masked by in-
teractions among age, sex, year, or external covariates.
Hierarchical Bayesian models provide a flexible solution
for estimating these effects in the context of multiple lev-
els of variability (Clark et al. 2005; Gelman & Hill 2006;
Cressie et al. 2009). At each level of social organization,
random effects may be used to model demographic pa-
rameters as being drawn from a larger probability distri-
bution (Lindley & Smith 1972; Pinheiro & Bates 2000;
Gelman et al. 2004). We used a time series of census
data from an endangered population of killer whales
(Orcinus orca) to demonstrate use of these hierarchi-
cal approaches to evaluate alternative hypotheses about
the effect of group membership on survival and fore-
casts of population abundance, even when the mecha-
nism responsible for group differences is unknown. Killer
whales are a predatory marine mammal with a social or-
ganization that is complex and static over many years. A
typical population interacts within three social groups:
matriline (a mother and offspring), pod (several matri-
lines), and subpopulation (multiple pods). The size and
composition of each group are in part related to prey
specialization. For example, fish-eating, resident popula-
tions of killer whales have larger, more cohesive groups
than transient populations that eat mammals (Bigg et al.
1990).

The 30-year time series of data we used in our analy-
ses was collected on the southern resident population of
killer whales that occurs in the northeast Pacific Ocean.
Thirty years is shorter than the lifespan of this species
(50–60 years for females; Krahn et al. 2004). Individuals
within the population spend their entire lives in closely
related matrilines. A typical matriline consists of <20 ani-
mals spanning one to four generations (Wiles 2004). Mul-

tiple matrilines form pods, and matrilines remain within
the same pod over generations.

The southern resident population of killer whales was
listed as endangered under Canada’s Species at Risk Act in
2004 and under the U.S. Endangered Species Act in 2005.
A 2008 census of the population recorded 83 individu-
als. In summer the population inhabits portions of Puget
Sound (Washington, U.S.A.) and the southern Strait of
Georgia (British Columbia, Canada). Less is known about
the population’s distribution in winter, when detection
is more difficult and search effort is reduced. In winter
one pod appears to remain largely within Puget Sound,
whereas the other pods are thought to leave Puget Sound
and travel south along the coast into waters off Oregon
and California (U.S.A.) (Krahn et al. 2004). Factors in-
fluencing survival may include declines in abundance
of prey (particularly Chinook salmon, Oncorhynchus

tshawytscha) and human activities such as operation of
whale-watching vessels and release of pollutants into the
ocean (Krahn et al. 2004). Although more than 30 years
of detailed demographic data have been collected on this
population, the factors driving its decline in abundance
and potential demographic differences among matrilines,
pods, and subpopulations remain largely unknown. We
used hierarchical Bayesian modeling to test different hy-
potheses concerning the effect of different levels of so-
cial organization on survival of southern resident killer
whales.

Methods

An intensive mark-resight study has been conducted on
the southern resident population of killer whales since
1976. Every individual in the population has been pho-
toidentified with techniques developed by the Center
for Whale Research (after 1976, all individuals have been
identified in the first year of life), and animals are re-
sighted in subsequent years by scientists with the center
and the governments of the United States and Canada
(CWR 2008). Because every animal is observed every
year, the effort is a complete population census. The
population has three distinct pods, J, K, and L, and each
pod consists of multiple matrilines. Because no immigra-
tion or emigration occurs (Krahn et al. 2004), the status
of all individuals is assumed; animals not seen in a given
year are considered dead. Among the pods there were 19
matrilines and 165 individuals.

Incorporating Social Organization into Demographic Models

We considered four models of population demography,
each with different social organization: a model with no
social organization; a model with variation in survival
among matrilines (but not pods); a model with varia-
tion in survival among pods (but not matrilines); and a
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model with variation in survival among both matrilines
and pods.

Data from the annual census are binary (presence or
absence). Simultaneously estimating probabilities of cap-
ture and survival from presence–absence data often re-
quires capture–recapture models (Royle & Link 2002;
Barry et al. 2003). Because we had annual data on all
individuals in the population, we used a simpler logistic
regression to model survival. This approach allows the bi-
nary response to be linked to covariates with generalized
linear models (GLMs) that have a logit transform. Covari-
ates can include both fixed and random effects. Because
there appeared to be substantial differences in survival
rates among years (Ford et al. 2010), we included year
as a random effect in each candidate model. The model
without social organization is

logit (φi,t ) = B0 + B1ai,t + B2a2
i,t + B3si

+ yt ; yt ∼ normal(0,σyear),
(1)

where φi,t is the survival probability of animal i at time t.
Following Krahn et al. (2004), B1 and B2 are coefficients
that allow the effect of age (a) to be quadratic, and B3 is
a coefficient that allows survival to differ between sexes.
The temporal deviate, yt , allows average survival to vary
among years. This model assumes that after age and sex
are accounted for survival probability is equal for all indi-
viduals in a given year, regardless of matriline or pod. In
this model, differences in survival probability are deter-
mined by differences in the number of deaths. Individual
effects cannot be included because at the individual level
the number of deaths is limited to one.

To model differences in survival probabilities among
matrilines, we constructed a hierarchical version of the
model with random effects in matrilines (Gelman & Hill
2006):

logit (φi,t ) = B0 + B1ai,t + B2a2
i,t + B3si

+ gi + yt ; yt ∼ normal(0,σyear),
(2)

where gi is the difference of the matriline of animal i

from the population mean (B0). We modeled these ma-
triline differences as normally distributed, which yielded
the binomial-normal model (Royle & Link 2002), in which
gi ∼ normal(0, σg), and σg controls variation among ma-
trilines. We assumed that the difference from mean sur-
vival probability (a function of sex and age) of all individu-
als in a matriline was equal, and we held these differences
constant over time. To model differences in survival prob-
ability among pods, we replaced the matriline differences
(gi) with pod differences (pj) : p j ∼ normal(0, σp).

In the full model with variation among both matrilines
and pods, we assumed the matriline differences were
normally distributed around the pod mean rather than the
population mean, so the matriline effect was distributed
gi ∼ normal(p j , σg). The pod effect had a mean of zero
because the deviation of each pod was distributed around

the population mean (B0):p j ∼ normal(0, σp). The full
model had seven parameters: three sources of variability
(σyear,σp,σg) and four fixed-effect coefficients (age, age2,
sex, and population intercept B0).

Constructing an Informative Prior

A northern population of resident killer whales also oc-
curs along the west coast of the United States and Canada.
The habitat of the northern population is adjacent to that
of the southern population; however, the populations
are genetically distinct (Krahn et al. 2004). We did not
include data from the northern population in the same
model as the southern resident data because the north-
ern population is not censused annually and its social
organization is thought to differ from the southern pop-
ulation (Ford et al. 2000). Nevertheless, survey data from
the northern population is informative with respect to
differences in survival between ages and sexes, and we
used these data to construct an informative prior for our
analyses of the southern population.

We fit the logistic regression model without pod or
matriline differences (Eq. 1) to data from surveys of the
northern population conducted from 1976 to 2007 (Ford
et al. 2000; Ellis et al. 2007). All model coefficients were
assigned broad normal (0, 10) priors. We used MCM-
Cpack library in R to estimate posterior distributions
of the parameters: B0 ∼ normal(4.11,σ = 0.25); B1 ∼
normal(0.045,σ = 0.02); B2 ∼ normal(−11.79E −
04,σ = 3.0E − 04); B3 ∼ normal(−0.40,σ = 0.25).
We used these posteriors as prior distributions in the
analyses of the data from the southern population.
Following Gelman (2006), we used uniform (0, 10)
priors on standard deviations of random effects for social
groupings and temporal deviations.

Model Selection

Each of the hierarchical models represented a different
hypothesis about the effect of social organization on sur-
vival. We used two Bayesian model-selection techniques
to evaluate whether the data supported the different hy-
potheses. First, we used the deviance information crite-
rion (DIC) (Spiegelhalter et al. 2002). The DIC is conve-
nient to use (available in BUGS software; Lunn et al. 2000)
and its effective number of parameters approximate the
complexity of hierarchical models (Spiegelhalter et al.
2002). Second, we estimated the posterior model proba-
bilities by treating each level of variation as a mixture of
fixed and random effects (mixture random effect model)
(Xia et al. 2005). We included each level of variability
with indicator functions: G1 = 1 if group level variation
was included and G1 = 0 otherwise. For example, when
we applied the mixture random effect to pod differences,
pod effects became a mixture of the mean with and with-
out random effects: pmix, j = G1 p j + (1 − G1)B0. Output
from this approach is similar to reversible jump Markov
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Table 1. Deviance information criterion (DIC) weights and posterior probabilities for four different models used to evaluate whether social
organization affects survival of killer whales.∗

Model σ̂p σ̂g DIC DIC weight Posterior P[M|Y]

1 0.72 (0.24) 0.25 (0.18) 757.7 0.45 0.26
2 0.71 (0.26) – 758.4 0.31 0.37
3 – 0.28 (0.19) 761.2 0.08 0.15
4 – – 759.7 0.16 0.22

∗Parameter medians and standard errors for the estimated variance parameters are in parentheses. The parameter σ̂p controls variation in
survival among pods; the parameter σ̂g controls variation in survival among matrilines. The DIC weights and model complexity (pD) are

calculated for each model and then used to calculate the normalized DIC model weights (Spiegelhalter et al. 2002). The posterior probability,
P[M|Y], is computed by treating each source of variability as a mixture of fixed and random effects with indicator functions.

chain Monte Carlo (Green 1995) in that the posterior
probability of each model is explicitly estimated. Al-
though the second approach is slightly more complicated
than the first, model uncertainty in the second approach
is represented as probabilities.

Projections of Population Size

We used the posterior parameter estimates from the best
model to project the population size of the southern res-
ident population of killer whales. To project abundance
over the next 10 years, we used the posterior distribu-
tions of the annual deviations estimated from the last 10
years because environmental conditions or prey availabil-
ity may be correlated among years (Ford et al. 2010). This
approach assumes that future conditions will be similar
to past conditions. Each of 5000 projections was initial-
ized from the 2008 age and sex structure of the southern
population. To allow for population growth, we used
previously published estimates of age-specific fecundity
rates and reproductive senescence (Ward et al. 2009). Al-
though the animals born in our 10-year simulations would
not reach sexual maturity, on the basis of existing data
(CWR 2008), we assumed 55% of the animals born would
be male.

Results

Both model-selection criteria (DIC and posterior model
probabilities) supported the inclusion of pod effects. The
highest posterior probability excluded matriline effects
(Table 1), whereas DIC assigned the most weight to the
model with both matriline and pod effects. In the mul-
tilevel model with random effects in both the matrilines
and pods, the difference between pods was estimated
to be greater than the difference between matrilines
(Table 1). Thus, even when effects at the matriline level
were included, they had less influence on survival than ef-
fects at the pod level. Hereafter, we focus on results from
the model with pod effects only; however, the results
were similar to the model with both matriline and pod
effects.

The influence of the prior from the northern popu-
lation on the estimated survival curves appeared to be
relatively minor (Fig. 1). On the basis of analyses of the
CWR resight data, the southern population had a substan-
tially lower survival probability than the northern popu-
lation. Additionally, survival estimates differed substan-
tially across the three pods of the southern population.
Females in J and K had a median life expectancy of over
30 years, whereas females in the L pod had a median
life expectancy of slightly over 20 years (Fig. 1). Survival
curves among all models differed between sexes; as ex-
pected males had lower survival rates (Fig. 1; Promislow

Figure 1. Posterior probabilities of survival to age x
(Lx, survivorship) for three pods (J, K, L) in the

southern resident population of killer whales. The

mode of the survivorship at age x (thick line) and

95% CI (thin lines) are shown for females with (solid

line) and without (dashed line) an informative prior.

The shaded region represents the informative prior

constructed from the adjacent northern resident

population of killer whales. For each pod, 50%

survival is marked with a dotted vertical line. The

prior (shaded) and posterior of the male effect are

shown in the bottom right graph.
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Figure 2. Projected population sizes of southern

resident killer whales in 10 years on the basis of the

results of the model of killer whale survival with

highest posterior probability given the data (one level

of social organization and pod-specific survival rates)

(shaded area, posterior distribution when social

organization is not accounted for; dashed line,

posterior distribution with social organization

included; 5000 MCMC iterations).

1992). The posterior of the sex-level differences was es-
sentially the same as the prior (Fig. 1), which indicated
the effect of gender on survival probability was similar
between the northern and southern populations.

Using the model with pod-level effects only, we pro-
jected the size of the southern population over 10 years
and compared those estimates to those generated by a
model without pod effects (Fig. 2). Although 10 years is
short relative to the lifespan of killer whales, the model
with pod effects produced a slightly less variable estimate
of the population size after 10 years (σN2018 = 6.95, 7.20,
respectively) and a smaller population size after 10 years
(94.5% of the size projected by the model without pod
effects; xN2018 = 89.08, 94.27, respectively).

Discussion

Our analyses of census data on the southern, resident
population of killer whales suggest that pod member-
ship has a greater effect on survival among individuals
than does matriline membership. The variation in sur-
vival among pods translates into large differences in life
expectancy; of the three pods, pod L had the lowest me-
dian life expectancy. Although the mechanism for pod-
level differences in survival is unknown, we suspect prey
availability, which may differ among pods, may play a

role. The pods have different spatial distributions within
Puget Sound in summer (Hauser et al. 2007) and occupy
the outer coast of the United States to differing degrees
during winter (Krahn et al. 2004). Ford and Ellis (2006)
found a correlation between an index of annual abun-
dance of Chinook salmon and temporal differences in
survival of the entire southern population. Thus, the dif-
ferent spatial distributions of the pods may be associated
with differential access to prey. Nevertheless, the lack of
fine-resolution spatial data on prey availability for each
pod limits one’s ability to test the hypothesis that prey
availability affects survival.

Additionally, potential regional differences in contam-
inant concentrations or composition in the prey con-
sumed by killer whale pods could lead to differences
in survival among pods. Pod L (and occasionally pod
K) migrate long distances in winter, in some years as
far as central California (Krahn et al. 2004). Concentra-
tions of contaminants in salmon from California and Puget
Sound or British Columbia may differ. If the concentra-
tions are sufficiently high to affect the health of whales,
one might expect the southern resident population to
have lower survival than the northern resident popula-
tion. First, these two whale populations are exposed to
different levels of human activity (Krahn et al. 2004).
The southern population spends more time near urban
areas in Puget Sound, where vessels frequently encounter
whales. Research on ambient noise (Holt et al. 2009) and
vessel–whale interactions (Noren et al. 2009) suggests
that vessels may alter whale behavior, including forag-
ing, and vocalization patterns. Second, concentrations of
contaminants in prey consumed by the two populations
may differ. The quantity of organic pollutants is several
times higher in salmon from Puget Sound than in salmon
from more northern waters consumed by the northern
resident population (Cullon et al. 2009). Third, the south-
ern population may have higher levels of inbreeding, po-
tentially because of intrapod mating (M. Ford, personal
communication). The southern population is smaller than
the northern population and went through a population
bottleneck in 1950s and 1960s when it was the target of
a live-capture fishery. Results of previous research show
that these two populations have different fecundity rates;
females in the southern population are less productive
(Ward et al. 2009). Our findings suggest that, regardless
of the mechanism, lower survival is contributing to the
relatively low population growth of the southern popu-
lation over time.

Although we applied the Bayesian hierarchical frame-
work to analyses of structure in the survival of individuals
in a population, these techniques are not limited to appli-
cations involving social organization or binary data. These
methods have been applied to problems with nested vari-
ation in a range of disciplines (Gelman & Hill 2006) and
may be applied to virtually any ecological data that are
clustered on one or more levels.
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