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Summary

1. Understanding spatial structure and identifying subpopulations are critical for estimating popu-

lation growth rates and extinction risk, and as such essential for effective conservation planning.

However, movement and spatiotemporal environmental data are often unavailable, limiting our

ability to directly define subpopulations and their level of asynchrony.

2. This study applies a recently developed statistical technique using time-series analysis of abun-

dance data to identify subpopulations. The approach uses multivariate state-space models and

Akaike’s Information Criterion-based model selection to quantify the data support for different

subpopulation numbers and configurations. This technique is applied to the population of Califor-

nia sea lionsZalophus californianus in theGulf of California,Mexico, distributed across 13 breeding

sites.

3. The abundance of California sea lions in the Gulf of California has declined over the last decade,

though not all areas have been equally affected. In light of this variation, it is important to under-

stand the population structure to ensure accurate viability assessments and effectivemanagement.

4. Our data support the hypothesis that the Gulf of California sea lion population has four subpop-

ulations, each with 2–5 breeding sites. The dynamics between several adjacent subpopulations were

correlated, suggesting that they experience similar environmental variation. For each subpopula-

tion, we estimated long-term growth rates, as well as the environmental and observation variation.

5. For most of the subpopulations, our estimates of growth rates were considerably lower than

those previously reported. In addition, we found considerable variability across subpopulations in

their projected risk of severe decline over the next 50 years.

6. Synthesis and applications. We illustrate a newmultivariate state-space modelling technique that

uses timeseriesofabundance toquantify thedata support fordifferent subpopulationconfigurations.

Our analysis of theCalifornia sea lion population in theGulf of California indicates that the popula-

tion is spatially structured into four subpopulations, eachexhibitingdistinct risksof extinction.Based

on our results, we recommend that conservation and management efforts in the Gulf of California

focus on the two subpopulations with high probabilities of extinction within the next 50 years

(NorthernMidriff, SouthernMidriff).Multivariate state-spacemodels provide a practical approach

to determine the spatial structure of virtually any species; they may be particularly useful for species

of conservation concern forwhichdataondispersal andenvironmental drivers are likely tobe scarce.
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Introduction

A large body of research on the dynamics of metapopulations,

a population that is structured into multiple subpopulations,

has established that the level of fragmentation and synchrony

within a metapopulation plays a major role in determining its

viability (Levins 1970; Goodman 1987; Pulliam 1988; Gilpin &

Hanski 1991; Tilman & Kareiva 1997; González-Suárez &

Gerber 2008). This research has shown that effective manage-

ment must not only identify subpopulations, but also evaluate

which subpopulations are robust and independent – and thus

might act as buffers against declines, and which are correlated

together – and thus have a more limited ability to buffer the

metapopulation as a whole. Unfortunately, identifying sub-

populations is not trivial. Even when long-term survey data

are available from multiple sites, determining which sites

behave as asynchronous subpopulations is difficult because

survey data are often corrupted by observation errors and

these errorsmay create the illusion of asynchrony and indepen-

dence.

In this paper, we show how a statistical analysis using multi-

variate state-space models can be used to quantify the data

support for different subpopulation configurations in a meta-

population.We apply this approach to an analysis of the popu-

lation structure of California sea lions Zalophus californianus

in the Gulf of California, Mexico. State-space models include

separate models for the population process and the observa-

tions of that process. The advantage of using state-space mod-

els is that the total variance in a time series of observations can

be partitioned into observation and process variance (Holmes

2001; de Valpine & Hastings 2002; Lindley 2003; Dennis et al.

2006). The latter refers to the variance in population growth

rates over time (as a result of stochastic environmental condi-

tions) while the former refers to observation variability. Sepa-

rating these two types of uncertainty is critical because

partitioning reduces the bias in the process variance estimates –

a requirement for unbiased forecasting and extinction risk esti-

mation (Holmes et al. 2007).

California sea lions are found along the Pacific coast of

North America from British Columbia to the Gulf of Califor-

nia (Peterson & Bartholomew 1967; Carretta et al. 2007),

although breeding is limited to areas south of the Channel

Islands (California). The species has been subdivided into sev-

eral subpopulations based on analyses of genetic and ecologi-

cal data, but the number, composition and locations of these

subpopulations varies among studies, even those based on sim-

ilar data. For example, independent analyses of genetic data

have proposed between one and three subpopulations within

the Gulf of California (Maldonado et al. 1995; González-

Suárez et al. 2009; Schramm et al. 2009). Discrepancies in the

number of subpopulations are partly explained by the use of

different molecular markers, namely female-inherited mtDNA

vs. biparentally inherited nuclear DNA, which have different

patterns because of the observed sex bias in the dispersal in this

species (González-Suárez et al. 2009). In addition, the location

and number of sampled sites differed among these genetic stud-

ies, and in some cases were limited to a single site within the

Gulf of California (Maldonado et al. 1995).

Alternative subpopulation configurations have been pro-

posed based on analyses of multiple ecological and environ-

mental covariates: diet diversity, isotope data, sea surface

temperature and chlorophyll concentration (Szteren 2006).

However, the composition of these subpopulations (in terms

of which breeding sites belong to which subpopulation)

differed depending on the type of covariate used (e.g. diet vs.

diseases).The inconsistencyof results among thesediverse stud-

ies reflects our current lack of understanding about the actual

population structure of California sea lions in the Gulf of Cali-

fornia. Improving our knowledge of the population structure

and connectivity is critical for conservation efforts because dif-

ferent subpopulation configurations result in distinct estimates

of long-term viability (Gerber 2006; Gonzalez-Suarez et al.

2006).Although, as awhole, thenumbers ofCalifornia sea lions

in theGulf ofCalifornia have declinedbymore than 20%in the

last decade (Szteren, Aurioles & Gerber 2006), some breeding

sites show increasing trends,making it difficult to determine the

overall viability ofCalifornia sea lions in the area.

Ideally, the determination of population structure should be

based on movement data and data describing the environmen-

tal factors that cause correlation across sites. Movement pat-

terns are normally determined with mark–release–recapture

studies, but these studies are often implausible for a species of

concern (Mech & Shannon 2002). For example, obtaining

long-term movement data on California sea lions would

require permanent marking of young animals using branding,

which raises multiple legal and ethical concerns (McMahon,

Bradshaw & Hays 2006a; McMahon et al. 2006b). Marking

needs to be followed by a long-term resighting programme. In

a long-lived species, this is often logistically and financially

challenging and management actions often cannot be post-

poned for 5–15 years. The result is that detailed movement

data for a species of conservation concern are rarely available.

Spatial data on important environmental factors are also

rarely available, both for logistical reasons and because the fac-

tors that cause variation in demographic parameters are often

unknown. Multivariate time-series analysis provides a way to

detect the spatial patterns of correlation and synchrony across

different sites and reveal the subpopulations, if they exist

(Hinrichsen & Holmes 2009). Multivariate time-series analysis

requires only time-series count data from multiple sites and

offers a novel approach to test hypotheses about various sub-

population configurations and estimate growth rates, as well
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as process and observation variability (Hinrichsen & Holmes

2009).

In this paper, we evaluate six alternative hypotheses about

the number and configuration of subpopulations in theGulf of

California using survey data (1979–2006) consisting of sea lion

counts from 13 breeding sites in the area. The different hypoth-

eses are based on different proposed drivers for population

structure: genetics, disease, diet and environmental factors (see

Materials and methods). Each hypothesis is converted into an

appropriatemultivariate state-spacemodel, and the bestmodel

is chosen using model-selection criteria. The estimated model

is then used for forecasting and to provide a risk assessment

that takes population structure into account.

Materials and methods

DATA COLLECTION

We collected abundance data from 1979 to 2006 from all 13 Califor-

nia sea lion breeding sites (rookeries) in the Gulf of California

(Fig. 1) although surveys were not possible for all years at each site

(Fig. 2). The study sites include Rocas Consag (RC), San Jorge (SJ),

Los Lobos (LL), Granito (GR), Los Machos (LM), Los Cantiles

(LC), El Partido (EP), San Pedro Nolasco (SN), San Pedro Martir

(SM), San Esteban (SE), Rasito (RA), Los Islotes (LI) and Farallon

de San Ignacio (FI). Animals at each site were counted once during

the sea lion reproductive season from June to August (Peterson &

Bartholomew 1967). During this time,>77% of animals are on land;

adult males defend territories and adult females give birth and nurse

their young (Bonnell & Ford 1987). In addition, >84% of pups are

born from the end of May to the end of June (Garcia-Aguilar &

Aurioles-Gamboa 2003); thus, our survey periods included most of

the individuals born during the year’s reproductive season. The

breeding sites were surveyed by circumnavigating each site in a small

fibreglass boat with an outboard engine, at a distance £50 m from

the shoreline (Aurioles-Gamboa & Zavala-Gonzalez 1994; Zavala-

Gonzalez & Mellink 1997). Counts were conducted between 07.00

and 19.00 h each day by one trained observer. For more details see

the description ofmethods inWielgus et al. (2008).

MULTIVARIATE AUTOREGRESSIVE STATE-SPACE

MODEL

We used the multivariate state-space (MARSS) framework described

by Hinrichsen & Holmes (2009) to model different population struc-

tures and to estimate population parameters, including process and

observation variability. Process variability represents the temporal

variability in population growth rate because of environmental

stochasticity. This type of variation is multiplicative, as it appears in

the growth rate term and becomes an additive termwhen the model is

written as a function of log population size. Observation variation

includes several types of error: sampling error resulting from only a

portion of a population being sampled, measurement error resulting

from inaccurate measurements (e.g. miscounting), and variability in

sightability caused by a myriad of different environmental factors. In

many ecological data sets, including the sea lion data analysed here,

the sources of observation variation are confounded and cannot be

independently estimated. Contrasted with process variation, observa-

tion variation has no bearing on current or future abundance, only

our observations of that abundance.

State-space models have been applied to time series of ecological

data because of their ability to separate out these two sources of varia-

tion, without the need of prior estimates of observation variance or

replicated observations. The theory behind these models and their

estimation is rooted in 50 years of maximum-likelihood (ML)

research (reviewed in Harvey 1989; Shumway & Stoffer 2006; Roweis

& Ghahramani 1999). State-space models are examining increasing

application in ecology, both using ML (Holmes 2001; de Valpine &

Hastings 2002; Shumway & Stoffer 2006) and Bayesian approaches

(Meyer & Millar 1999; Clark & Bjørnstad 2004; Ward et al. 2007;

Newman et al. 2009). The majority of the ecology literature has

focused on the analysis of single time series (Staples, Taper & Dennis

2004; Dennis et al. 2006), however these methods have been extended

to two-dimensional observations to analyse movement data (Jonsen,

Myers & Flemming 2003). The MARSS framework used here (devel-

oped in Hinrichsen & Holmes 2009) is an extension of these estab-

lishedmodels to the multi-dimensional setting.

In the MARSSmodel, we use n to represent the number of discrete

survey sites, and m to represent the number of unknown subpopula-

tions. For the process model, Xt denotes the vector of length m

representing true logarithmic subpopulation sizes in year t, u is an

m-element vector of subpopulation growth rates, and gt is a vector of
lengthm representing the process errors in year t. We assume the pro-

cess errors (gt, gt + 1, …) are serially uncorrelated in time, and drawn

from a multivariate normal distribution with mean zero and vari-

ance-covariance matrix Q. This assumption arises from stochastic

properties of population processes (Dennis, Munholland & Scott

1991; Holmes et al. 2007). The multivariate population process in the

MARSSmodel is given by

Xtþ1 ¼ Xt þ uþ gt: eqn 1

WhenQ is a diagonal matrix, the trajectories of subpopulations are

independent – we continue to describe this model as ‘multivariate’

Fig. 1.Map of the Gulf of California, Mexico. The numbered sites

correspond to: (1) Rocas Consag; (2) San Jorge; (3) Los Lobos; (4)

Granito; (5) Los Cantiles; (6) Los Machos; (7) El Partido; (8) Rasito;

(9) San Esteban; (10) San PedroMartir; (11) San Pedro Nolasco; (12)

Los Islotes; (13) Farallon de San Ignacio. Circles show the four sub-

populations selected by the best-fitmodel (Table 1).
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however, because multiple subpopulations are being modelled simul-

taneously. Divisions between subpopulations may be less discrete,

and several subpopulations may have correlated dynamics (meaning

good and bad years are correlated). We allow off-diagonal elements

ofQ to be non-zero in some of our models to incorporate this possi-

bility.

The observation process in theMARSSmodel is given by

Yt ¼ Aþ ZXt þ et; eqn 2

where Yt is the n-element vector containing observed abundances

at the n sites at time t. The number of sites (n) may be different

from the number of subpopulations (m); Z, an n · m matrix of

0s and 1s, translates the m subpopulation sizes at time t into n

observations at time t. When the number of sites is greater than

the number of subpopulations, some sites are different observa-

tions of the same subpopulation trajectory. We use the n-element

vector A to represent the mean bias between these sites. Observa-

tion errors are represented by the n-element vector et; like the

process model, we assume that these errors are serially uncorre-

lated and distributed according to a multivariate normal distribu-

tion with a mean of 0 and variance-covariance matrix R.

Equation 1 together with eqn 2 represent the complete MARSS

model.

HYPOTHESES

Because of the flexibility of theMARSS approach, there are hundreds

of thousands of combinations of models for this system. Our objec-

tive was not to find the model that fit the data best; rather our goal

was to evaluate six different subpopulation configurations corre-

sponding to the six hypotheses concerning the biological and environ-

mental variables that determine the population structure. These

hypotheses were based on previous work on the biology of sea lions

in theGulf of California and were developed independent of our anal-

ysis. For all hypotheses, n = 13, indicating 13 sites. These sites are all

breeding sites (rookeries), but we refer to them simply as ‘sites’. The

hypotheses differ in terms of the number of subpopulations (m) and

which sites belong to which subpopulation. The six hypotheses are:

Fig. 2.Maximum-likelihood estimates (continuous line) of logarithmic subpopulation abundances and their 95% confidence intervals (CI)

(dashed lines) for 13 sea lion breeding sites in theGulf of California.Note that the CI are for the subpopulation trajectories not the observed data;

thus that the data fall outside the CI is expected and simply depends on the site-specific observation errors. All estimates are derived from the best

model with four correlated subpopulations (the distancemodel). Actual count data are shown by grey circles.
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• Panmictic (m = 1): all sites are part of a single large panmictic

population. There is a single population trajectory, and all sites are

independent observations of this trajectory.

• DNA (m = 2): sites are grouped into two subpopulations reflect-

ing genetic stocks defined by mitochondrial and nuclear DNA vari-

ability (González-Suárez et al. 2009): Southern Baja Peninsula (LI,

FI); andUpper Gulf of California (all other sites).

• Diet (m = 4): sites are grouped based on diet and environmental

variables into four subpopulations (Szteren 2006): North (RC, SJ,

LL); Northern Midriff (GR, LM, LC, EP); Southern Midriff (SN,

SM, SE, RA); South (LI, FI). This configuration is similar to the one

based on geographical distance (below), with the exception of the El

Partido site.

• Disease (m = 4): sites are grouped into four subpopulations

defined by shared pathogens (Szteren 2006): North (SJ, RC, LL, GR,

LC, LM); North Central (EP, RA); Central (SE, SM, SN); South (FI,

LI).

• Distance (m = 4): sites are grouped into four subpopulations

defined by geographical distance: North (RC, SJ, LL); Northern

Midriff (GR, LM, LC); Southern Midriff (SN, SM, SE, EP, RA);

South (LI, FI). The geographical subpopulations were established

using an agglomerative hierarchical cluster analysis (described in

Gonzalez-Suarez et al. 2006) considering similarity based on distance

from the RC rookery.

• Independent (m = 11): each site represents an independent sub-

population and thus each is an observation of an independent sub-

population trajectory.

Each hypothesis represents a basic structure: the number of sub-

populations and which sites are within which subpopulation.

Within each of these six hypotheses, we tested different levels of

complexity. We allowed the level of process variation (the year-to-

year variability) to be different or equal across subpopulations and to

be independent or correlated across subpopulations. Similarly, we

allowed the growth rates to be different or equal across subpopula-

tions. Although density dependence can be easily included inMARSS

models (Dennis et al. 2006), we did not usemodels incorporating den-

sity dependence because California sea lion numbers have been

declining in the Gulf of California as a whole (Fig. 2), and are

thought to be below carrying capacity because of historical exploita-

tion (Zavala-Gonzalez &Mellink 2000). As a diagnostic check, we re-

ran our best-fit model using the density-dependent version of eqn 1

(Xt + 1 = BXt + u + gt). The lowest diagonal element of the esti-

matedBmatrix was 0Æ9831, indicating virtually no support for density
dependence (B = 1 represents density independent growth). For the

observation model, we assumed that the observation errors were un-

correlated (diagonal R matrix). This assumption was required

because of missing data (years with no census), however the assump-

tion was reasonable given that observations were collected indepen-

dently at each site. We tested models where the variance of the

observation errors (the diagonal elements ofR) was allowed to be dif-

ferent or forced to be equal across sites.

PARAMETER ESTIMATION, CONFIDENCE INTERVALS

AND DIAGNOSTICS

We used theKalman filter and EMalgorithm (chapter 6, Shumway&

Stoffer 2006) to obtain the ML parameters for each model. To ensure

global maximization, we used 5000 independent runs initialized from

different random starting points. To independently verify the parame-

ter estimates, we compared the estimates with those using the data-

cloning algorithm, an alternate ML algorithm for state-space models

(Lele, Dennis & Lutscher 2007). Code forMARSS parameter estima-

tion via the Kalman-EM and data-cloning algorithms are available at

http://www.ecologybox.org/projects/kalman-em.

Approximate confidence intervals (CI) on MARSS parameters

can be computed via numerical estimation of the Hessian matrix

(Shumway & Stoffer 2006) or from the Markov chain Monte

Carlo output from the data-cloning algorithm (Lele et al. 2007).

These approximate CI are based on the large-sample properties of

ML estimates. Because our sample size was relatively small

(because of missing values), we used parametric bootstrapping

(following Stoffer & Wall 1991) to estimate 95% CI. Five thou-

sand data sets were simulated from the MARSS model using the

ML parameter estimates and missing data inserted where it is

present in the original data set. Parameters were then estimated

for each of the bootstrapped data sets (as described above), and

the 95-percentiles formed the parameter CI. Asymptotic confi-

dence intervals for the estimated subpopulation sizes (Fig. 2) were

generated from the standard errors output from the Kalman filter

using the best-fit model (chapter 6, Shumway & Stoffer 2006).

MODEL SELECTION

Frequentist model selection is based on minimizing the difference (in

terms of likelihood) of an estimated model relative to the distribution

of possible data from a true (unknown) process (Burnham & Ander-

son 2002). Akaike’s Information Criterion (AIC) is the most used

estimator for this difference and is based on the ML of the model fit

with a penalty term that measures the degree to which the complexity

of the model leads to over-fitting (and thus an inflated likelihood

value). The original AIC model-selection criterion is

AIC = )2 log L + 2K, where the penalty term is the number of

model parameters K. This is based on large-sample properties of the

ML of a fittedmodel and is biased when the data set is small. A small-

samplemodification, AICc = )2 log L + 2K(K + 1) ⁄ (n ) K ) 1),

is designed to correct this bias. However, for MARSS models, the

small-sample problem is more extreme and AICc severely underesti-

mates the complexity penalty for this model class (Cavanaugh &

Shumway 1997).

There are two versions of AIC that are designed specifically for

state-space models. The first, AICb, uses bootstrapping to estimate

the penalty term (Cavanaugh & Shumway 1997); the second, AICi,

usesMonte Carlo simulation to estimate the penalty term (Bengtsson

& Cavanaugh 2006). Because we were testing models with differentZ

matrices (in eqn 2), our model-selection option was constrained to

AICb. We followedCavanaugh& Shumway’s (1997)AICb algorithm

using a parametric bootstrap. The AICb values were used to rank

each model in terms of its data support, with lower AICb indicating

greater support. A model with an AICb value that is eight points

greater that fromanothermodel is consideredweakly supported, rela-

tive to the competing model (Burnham & Anderson 2002). Our code

for computation of AICb model-selection criteria is available at

http://www.ecologybox.org/projects/kalman-em.

FORECASTING

Metapopulation forecasting was performed by numerically simulat-

ing 1000 50-year subpopulation trajectories using eqn 1 with our best

model (the distance model; Table 1) and theML estimates of popula-

tion growth rate (u) and the variance-covariance matrix (Q) for this

model. Simulations were initialized from the estimated subpopulation

sizes in 2006, and for each simulation, we calculated the probability
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of 20%, 50% and 80% declines in the four subpopulations over a 50-

year forecast period. These forecasts assume that environmental vari-

ation over the next 50 years will be similar to that estimated during

the study period. Only process variation (Q) was included in these

projections because we are interested in the distribution of future true

subpopulation sizes, rather than the distribution of observed survey

counts.

Results

The best-supported model (lowest AICb) is one with four sub-

populations (Table 1), where the subpopulations are defined

by geographical distances (Gonzalez-Suarez et al. 2006). No

other models are supported (they have AICb’s more than eight

log-likelihood units higher than the best model). Under the

geographical distances model (Fig. 1), the number of sites

assigned to each subpopulation ranges from two (Southern) to

five (Southern Midriff). This means that the group of sites

within a subpopulation are sufficiently connected (presumably

by movement) that their dynamics are synchronized. The best

model allows each subpopulation to have a unique growth rate

(Table 1). ML estimates of growth rates are negative for the

Northern and Southern Midriff subpopulations, and positive

for the North and South subpopulations (Table 1). However,

the 95% CI for all subpopulations except the Southern sub-

population include 0. Our process variance estimates are low

(r2 = 0Æ004–0Æ0005), but still within the range estimated for

other large vertebrates (Holmes et al. 2007). Our observation

variance is also low (r2 = 0Æ042) relative to other marine sur-

veys, but it is also still within the range of other studies. Con-

verting the observation variance in log-space to the covariance

(CV) in normal space results in a CV of c. 0Æ21. In comparison,

a recent study of 21 species of cetaceans from theUSwest coast

showedCV ranging from 0Æ19 to 1Æ25 (Barlow&Forney 2007).

The best model has an unconstrained variance–covariance

matrix Q for the process variation. This configuration allows

each subpopulation to have a distinct process variance, but

also allows correlation in the year-to-year variation between

subpopulations (Table 2). The Southern subpopulation corre-

lates negatively with the other three; when the South experi-

ences favourable conditions, other subpopulations experience

negative conditions. Meanwhile, the North Midriff and South

Midriff populations appear to experience nearly identical envi-

Table 1. Model performance, given by Akaike’s Information Criterion (AIC) b-value, across the six hypotheses for the subpopulation

configuration

Parameters Hypotheses (m = no. subpopulations)

u Q R

Panmictic

(m = 1)

Diet

(m = 4)

Disease

(m = 4)

Distance

(m = 4)

DNA

(m = 2)

Independent

(m = 11)

Same Same Same 68Æ2 48Æ4 49Æ8 26Æ8 38Æ9 22Æ2
Unique Same Same 63Æ9 72Æ8 46Æ9 46Æ6 25Æ5
Same Unique Same 55Æ8 57Æ6 26Æ6 34Æ2 64Æ4
Same Same Unique 97Æ3 74Æ4 73Æ2 68Æ4 67Æ3 32Æ5
Unique Same Unique 87Æ1 91Æ3 71Æ8 69Æ3 65Æ6
Unique Unique Same 61Æ4 84Æ1 39Æ8 38Æ3 50Æ0
Same Unique Unique 102Æ8 103Æ8 202Æ1 82Æ7 114Æ7
Unique Unique Unique 111Æ8 133Æ8 167Æ8 77Æ5 169Æ2
Same Correlated Same 40Æ3 63Æ1 37Æ0 38Æ3 4804Æ7
Unique Correlated Same 44Æ9 87Æ2 13Æ7 39Æ6 989Æ4
Same Correlated Unique 110Æ3 163Æ8 321Æ4 102Æ2 NA

Unique Correlated Unique 116Æ3 176Æ5 467Æ9 94Æ5 NA

Process errors (Q) may be independent (a diagonal matrix) with variances that are the same magnitude across subpopulations (same),

independent with unequal variances across subpopulations (unique) or may be temporally correlated, meaning an unconstrained Q

matrix (correlated). The growth rate (u) and observation error matrix (R) parameters may also be equal (same) or unique across subpop-

ulations. The model best supported by the data is shown in bold; complex models that did not fully converge are not applicable.

Table 2. Maximum-likelihood estimates of subpopulation growth rates (u), process variances (Q) and correlation matrix of process variation

between subpopulations for the best model (Table 1)

Subpopulation Growth rates (u) Process r2 (Q)

Correlation (Q)

North N. midriff S. midriff South

North 0Æ002 ()0Æ0107, 0Æ0147) 0Æ0005 (0Æ0001, 0Æ0015) 1Æ00 0Æ62 0Æ62 )0Æ21
Northern midriff )0Æ027 ()0Æ0568, 0Æ0018) 0Æ0043 (0Æ0003, 0Æ0130) 0Æ62 1Æ00 0Æ98 )0Æ69
Southern midriff )0Æ003 ()0Æ0383, 0Æ0324) 0Æ0065 (0Æ0004, 0Æ0197) 0Æ62 0Æ98 1Æ00 )0Æ67
South 0Æ015 (0Æ0050, 0Æ0259) 0Æ0002 (0, 0Æ0006) )0Æ21 )0Æ69 )0Æ67 1Æ00

Bootstrapped 95% confidence interval for u and diagonal elements of Q are given in parentheses.
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ronmental conditions (q = 0Æ98; Table 2), suggesting that

they would be effectively acting as a single subpopulation, were

it not for differences in their growth rates and process variances

(Table 2; Fig. 2). Across all subpopulations, the process errors

have low levels of temporal autocorrelation (acf < 0Æ2), except
for the period 1985–1992, when all but the South subpopula-

tion declinedmore than expected (acf c. 0Æ5).
Because of missing data, we were forced to restrict our anal-

ysis to models with independent observation errors. However,

we evaluated support for site-specific observation variances

(different values for the variances on the diagonal of R) vs. a

single level of observation variance across all sites (the same

value for the variances on the diagonal of R). Our best model

supports the latter, with an equal observation variance across

all sites (r2 = 0Æ042). Although we were not able to evaluate

autocorrelation in observation errors because of missing data,

we did find support for the assumption of normal errors using

the Shapiro-Wilk test (P = 0Æ11).
Because the hypotheses about California sea lion population

structure were framed independently of our data analysis, even

the best model does not fit the data from all sites perfectly

(Fig. 2). When comparing the model CI and the data in Fig. 2,

note that the CI are for the unknown true subpopulation size,

rather than the observations of that size. The 95% CI for the

subpopulation sizes should contain less than 95%of the obser-

vations because these CI do not account for observation

errors. Nonetheless, it is apparent that those sites with the least

data have the worst fit (FI in the South subpopulation and RC

in the North subpopulation). The model essentially under-

weights those sites because they have few data points relative

to the other sites in the subpopulation with more data.

Although we do not advocate data-dredging, in theory it

would be possible to construct a MARSS model that would

better fit the data by allowing sites with little data to have inde-

pendent trajectories (for instance FI and LI could be allowed

to have opposite trends). The configurations of these sites with

sparse data should be re-evaluated after future data is col-

lected.

As expected, the Midriff subpopulations had the highest

probabilities of severe declines (50–80%) over the next

50 years (Fig. 3) in our forecasts. Assuming that the negative

trend for the NorthernMidriff subpopulation continues, there

is a>0Æ5 probability of the subpopulation experiencing a 50%

decline within the next 25 years. In contrast, because of

positive growth rates, the North and South subpopulations

have low probability of declines >20% in our projections

(Fig. 3). Because the North and South subpopulations appear

to be robust and the South subpopulation is acting indepen-

Fig. 3. Risk of 20%, 50% and 80% decline

for the four subpopulations defined by the

best-fit model. Left panels shows 25 represen-

tative trajectories from 1000 subpopulation

forecasts. The right panels show the probabil-

ities of 20%, 50% and 80% decline for each

of the subpopulations over the next 50 years.

The Midriff subpopulations, particularly the

Northern Midriff subpopulation, have the

highest risks of large declines if past trends

continue.
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dently of the other subpopulations, our forecasting predicts

that California sea lions have little chance of going extinct in

the Gulf of California over the next 50 years (P = 0 for

>50% declines). However, the centre of abundance would

shift south as the South subpopulation contributes an

increasing fraction of the total abundance, from 20% in

2006 to 33% in 2030 (and 43% by 2050). Obviously, these

forecasts are predicated on the assumption that the past

28 years are a reasonable indication of trends and variability

over the next 50 years.

Discussion

Anumber of ecological analyses have attempted to use biologi-

cal data to define subpopulations within the California sea lion

population in the Gulf of California. The number of estimated

subpopulations has varied between two and four, depending

on whether subpopulations were assumed to be primarily

defined by genetics, diet, disease or geographical distance

(Maldonado et al. 1995; Szteren 2006; González-Suárez et al.

2009; Schramm et al. 2009). Each of these analyses has been

performed independently, often with different data sources. As

a result, comparing the empirical support for these different

subpopulation configurations is difficult. In our analysis, we

tested each of these previous subpopulation configurations

plus two additional configurations, panmictic and 13 indepen-

dent subpopulations, using a single modelling framework

(MARSS), a common data set (multi-site time-series data),

and a common scale for measuring data support (likelihood-

based model-selection criteria). A MARSS approach does not

tell us what biological mechanisms or environmental factors

are causing the population structure, but the patterns of syn-

chrony and correlation can help us infer which mechanisms

and factors aremore important.

We found the population structure with the highest data

support has the 13 breeding sites organized into four subpopu-

lations, defined by distance-based clusters, with 2–5 breeding

sites in each subpopulation. That multiple, neighbouring,

breeding sites are grouped into subpopulations by theMARSS

analysis means that the dynamics at these sites are synchro-

nized – they have both the same growth rates and variability

and the trajectories do not diverge with time. Dispersal

between adjacent sites leads to this type of synchrony because

it causes the dynamics across multiple sites to become panmic-

tic. We also found support for a high degree of temporal corre-

lation between the three most northern subpopulations. This

means that, while each subpopulation has a unique underlying

trajectory and trend, all northern subpopulations appear to

have similar temporal deviations in year-to-year growth rates.

When one subpopulation experiences a good year, the others

are more likely to do so. The strong positive correlation

between these subpopulations is probably caused by overlap in

environmental conditions and a similar prey base. In contrast,

we found a negative correlation between the South subpopula-

tion and all other subpopulations; this may be driven by its

geographical remoteness and genetic differences relative to

other sites (González-Suárez et al. 2009). Further, the environ-

mental variation experienced by the South subpopulation may

be affected by its proximity to the PacificOcean (Fig. 1).

That we found strong support for subpopulations within the

population of California sea lions in the Gulf of California, as

opposed to panmictic dynamics, is not surprising. California

sea lions have strong fidelity to their natal breeding site and

low dispersal rates (Gonzalez-Suarez et al. 2006), and the

breeding sites in the Gulf of California are spread over a dis-

tance that is large relative to the foraging range of this species

(800 vs. 40–50 km). The differences in the growth rates across

the subpopulations are also not surprising given the large dis-

tance between the North and South subpopulation. Analyses

of isotopic and scat data suggest that within the Gulf of Cali-

fornia population, there are site-level differences in the diet

composition and mean trophic level of their prey (Porras-

Peters et al. 2008). Sea lions from sites in the declining Midriff

subpopulations tend to consume prey that is lower on the food

chain relative to sea lions in other subpopulations (Porras-

Peters et al. 2008). This suggests that differences in regional

production regimes may be causing some of the differences in

growth rates. Sea lions in theGulf of California also experience

anthropogenic disturbances, both directly (entanglement in

fishing gear; Zavala-Gonzalez & Mellink 1997) and indirectly

(the foodweb in theGulf of California being altered by fishing;

Sala et al. 2004). Although we do not have data on regional

differences in these anthropogenic impacts, regional differences

in fishing intensity should also be explored as a cause of the

regional differences in growth rates. Overall, the North, Mid-

riff and South structure indicates that there are important sub-

population differences and that management efforts based on

the overall trends in the Gulf of California may be insufficient

at the subpopulation level. Also it indicates that if monitoring

funds are limited, monitoring should contain representative

samples from each of the four subpopulations.

One of the advantages of using aMARSS modelling frame-

work is that observation error can be explicitly included in the

analysis. Ignoring observation error can lead to misleading

conclusions about population structure. Independent observa-

tion errors cause the abundance counts at different sites to be

asynchronous, and suggest, falsely, that their population

dynamics are also asynchronous. For instance, if a single sub-

population is observed at multiple sites and there is some

degree of asynchrony in observation errors, one can errone-

ously conclude that the sites represent different independent

subpopulations rather than multiple observations of the single

subpopulation. Ignoring the observation error would have had

serious implications for our analysis of the California sea lions

in the Gulf of California. The estimated observation variance

for the California sea lion counts was several orders of magni-

tude larger than the estimated process variance (r2 = 0Æ042 vs.
0Æ004 and 0Æ0005). Thus the observed counts at individual

breeding sites appear considerably more asynchronous than

the true trajectories with observation error removed.

Ignoring observation error also leads to inflated estimates of

process variance (the true year-to-year variation driving sub-

population trajectories), and this biases estimates of the risk of

decline. The MARSS estimates of process variance are not
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inflated because the state-space framework partitions the total

variance into process and observation variance (Holmes 2001).

However, the lower process variance estimates also mean that

estimates of subpopulation viability are less pessimistic than

those generated with models that ignore observation error.

For example, previous estimates of the probability of 50%

declines over 15 years were 0Æ43 for the Northern Midriff sub-

population (Gonzalez-Suarez et al. 2006), compared with our

estimate of c. 0Æ20. The MARSS framework also allows us to

estimate andmodel the temporal correlation (positive and neg-

ative) between subpopulations.Many studies of extinction risk

have shown that accounting for the pattern and level of tempo-

ral correlation is critical in metapopulation forecasting (e.g.

the recent study by Hinrichsen 2009). In our forecasts of the

population as a whole, we found that the risks of decline are

low, essentially because of the South subpopulation which is

both robust and acting independently of the other subpopula-

tions. Although our forecasts indicate that there is little chance

of severe declines at the level of the Gulf of California, our

forecasts assume that future conditions will be similar to the

last 28 years. Increases in environmental stochasticity, habitat

degradation or anthropogenic impacts would translate into

greater risks.

At some level, nearly all biological populations are struc-

tured spatially (reviews in Bjørnstad, Ims & Lambin 1999 and

Hanski 1999). Structure arises naturally because of landscape

heterogeneity, barriers to dispersal and geographical isolation

which effectively breaks a population into multiple asynchro-

nous subpopulations. Asynchony between subpopulations is

one of the most important features allowing metapopulations

to persist in the face of local extinctions. At the same time other

factors buffer and limit spatial structure and asynchrony. Dis-

persal dissolves structure by synchronizing what would other-

wise be multiple subpopulations into a single panmictic

population (Holmes & Semmens 2004). Shared environmental

conditions and resource bases correlate subpopulations, limit-

ing their temporal independence from each other. Even across

wide geographical distances, population dynamics may

become correlated if large-scale environmental conditions are

similar enough, a phenomenon known as the ‘Moran’ effect

(e.g. Steinar et al. 2005).

It is widely recognized that understanding these patterns of

synchrony and correlation are important for conservation and

management because these patterns determinewhether ameta-

population is able to balance local extinctions and recoloniza-

tions (Gilpin 1990; Hanski 1998) and determine how local sites

contribute to viability (Goodman 1987). Previous approaches

to forecasting metapopulations have assumed that the number

of subpopulations is known and that the degree of correlation

between subpopulations is known. Yet for many ecological

analyses, such as in our analysis of California sea lion popula-

tion structure, the number of subpopulations is unknown, and

in addition, both dispersal rates and the environmental drivers

are unknown or poorly monitored. Multivariate state-space

models provide a statistical approach for estimating the under-

lying patterns of synchrony and correlation – and uses only

time-series of counts across multiple sites. This provides

conservation biologists a new, practical, tool to identify the

subpopulations within a metapopulation of concern and to

forecast thosemetapopulations.
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