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Understanding species interactions is critical to discovering community dynamics. Recently, statistical
methods for estimating species interaction strengths from time series data have been developed based on
multivariate auto-regressive first-order, or MAR(1), models. However, the complex coding required pres-
ents a substantial barrier for most ecologists.We have developed LAMBDA, a software program that allows
users to easilyfitMAR(1)models tomulti-species time series data. The LAMBDApackage covers: data input
and transformation, selection of the interactions to include via a search algorithm and model selection,
estimation of interaction parameters via conditional least squares (CLS) regression or two different
maximum-likelihood (ML) algorithms, estimation of confidence intervals via bootstrapping, and compu-
tation of community stability properties using the estimatedmodel. We describe performance tests on the
variability of estimates, computation speed, and CLS versus ML estimation using simulated data.

� 2010 Elsevier Ltd. All rights reserved.
Software availability

Name of software: LAMBDA
Developer: Steven V. Viscido
Contact information: Department of Life Sciences, Winston-Salem

State University, Winston-Salem, NC 27110, USA. Tel.:
þ336 750 2216. viscidost@wssu.edu

Year first available: 2007
Availability and cost: Open source; http://lambda-

toolkit.sourceforge.net
Program language: MatLab version 7 or later
Program size: 2.5 MB
1. Introduction

Ives et al. (2003) developed a statistical framework for the
analysis of ecological community dynamics using time series
abundance data. This framework uses multivariate auto-regressive
first-order, or MAR(1), models, to estimate the strength of inter-
actions among species and between species and environmental
covariates. The framework also allows ecologists to estimate
a variety of community stability properties. Although this approach
All rights reserved.
provides a powerful framework for studying community dynamics,
implementation requires an intensive programming effort.

We created a MatLab toolbox, LAMBDA, which allows users to
perform a full MAR(1) statistical analysis through a graphical user
interface (GUI). LAMBDA includes all aspects of the data analysis
including data input, parameter estimation, bootstrap confidence
intervals, model selection, and diagnostic tools described by Ives
et al. (2003). LAMBDA provides ecologists with a statistical soft-
ware package that allows easy implementation of modern analysis
tools for studying and forecasting ecological communities and
ecosystems. In addition, LAMBDA is modular and open source, so
that as improvedalgorithmsaredeveloped, theycaneasily beadded.

2. Theoretical background

The MAR(1) model is built on a stochastic, univariate, first-order
auto-regressive, or AR(1), model for each species:

Xt ¼ aþ bXt�1 þ CUt�1 þ Et (1)

This is a density-dependent population model known as the
Gompertz model. Xt is the natural log of species abundance at time
t, a is the growth rate at 0 density, b is density dependence, Ut is
a q�1 vector of environmental covariates, and C is a 1 � q vector of
covariate interaction terms. Et is the process error representing the
temporally random deviations in population growth.
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To model a community of p interacting species, we convert Eq.
(1) to a multivariate, MAR(1), model (Ives et al., 2003):

Xt ¼ A þ BXt�1 þ CUt�1 þ Et (2)

Xt is a p�1 vector of the log-abundances of each species at time
t, A is a p � 1 vector of species growth rates, B is the p � p inter-
action matrix where bij is the effect of species j on species i, and C is
the p � q covariate interaction matrix. The process errors, Et, are
modeled as multivariate normal with mean 0 and variance matrix
S. The MAR(1) model as with any regression model, can be used in
two ways: (1) to estimate community interaction parameters from
an existing dataset, and (2) to forecast community dynamics by
simulation, once those parameters are known.

A MAR(1) model also allows ecologists to compute the multi-
variate stationary distribution of the species abundances. The
distribution has a mean mN and variance-covariance matrix VN

which can be computed from the model parameters. From mN and
VN, a variety of community stability properties can then be calcu-
lated: (a) the variance of the stationary distribution relative to the
variance of the process errorS; (b) the asymptotic return rate to mN

after a perturbation; (c) the asymptotic return rate of the variance
to VN after a perturbation; and (d) the reactivity, which measures
the sensitivity of the community to perturbations. For a full treat-
ment of MAR(1) theory including community stability properties
refer to Ives et al. (2003).
3. The LAMBDA toolbox

LAMBDA is a GUI and computational backend written in the
MatLab programming language (Mathworks, 2005) that performs
all the calculations needed to estimate a MAR(1) model from
multivariate time series data, compute statistics, and perform
diagnostics. Themain output from LAMBDA is an estimatedMAR(1)
model along with the stability properties (a) through (d), above.
The 95% bootstrapped confidence intervals on both the parameters
and stability metrics are also given, along with the set of interac-
tions (cf. Ives et al., 2003 and LAMBDA documentation). Although
space limitations prohibit a detailed description of the LAMBDA
work environment, the software has an extensive manual which
includes tutorials (http://lambda-toolkit.sourceforge.net).

LAMBDA consists of four interacting elements: (1) data routines
for importing, editing, pooling and transforming time series data,
(2) estimation of the MAR(1) parameters, (3) model selection
search routines for selecting the best-fit constrained interaction
matrices, and (4) parametric bootstrapping routines to provide
confidence intervals for estimated parameters and stabilitymetrics.
3.1. Data input and manipulation

As input, LAMBDA requires an ASCII file of columns representing
the time series of abundance estimates for each species and for any
covariates. In general, because MAR(1) models are on the log-scale,
transforming the data by the natural logarithm is necessary. To
avoid log-of-zero errors, LAMBDA can perform ln(x þ 1), ln(xþmin
(x)) or ln(x þ min(x)/2) transformations as specified by the user.
LAMBDA can also perform other transformations, including con-
verting the data to z-scores (Hampton and Schindler, 2006).
3.2. Parameter estimation

LAMBDA allows the user to select classical conditional least
squares (CLS) regression or maximum-likelihood (ML) estimation
for parameter estimation. These methods assume non-
autocorrelation of errors, and additionally the ML techniques
assume normality of errors.

3.2.1. Conditional least squares estimation
The conditional least squares (CLS) estimates of MAR(1)

parameters are those values of A, B, and C that minimize the
squared difference between the observed values Xt, and those
predicted at time t by the MAR(1) model, conditional on the
previous values, Xt�1. The CLS algorithm is given in Ives et al.
(2003).

3.2.2. Maximum-likelihood estimation
The alternative to CLS estimation is maximum-likelihood (ML)

estimation. ML parameters are those parameters that maximize the
likelihood of data conditioned on the model. The NeldereMead
simplex algorithm, which was used in Ives et al. (2003), is provided
as an option in LAMBDA. To compute the maximum-likelihood
parameters using the simplex method, LAMBDA performs an
unconstrained nonlinear optimization, beginning with random A,
B, and Cmatrices, and iterates repeatedly until the minimum value
of the negative log-likelihood is reached. Unfortunately, this
method takes much longer than CLS estimates, and can become
“trapped” in a local minimum.

To cope with these problems, LAMBDA includes an alternative
ML method, simulated annealing. Simulated annealing algorithms
are based on dynamically jumping around the parameter space
looking for the minimum (Cerny, 1985; Kirkpatrick et al., 1983) and
slowly reducing jump size until the search arrives at the lowest
negative log-likelihood. The number of iterative parameter
searches K can be set by the user, and LAMBDA defaults to K ¼ 104.
We let s represent the “temperature” of the system. Initially s ¼ 10,
and it is then decremented by 1% every K/100 iterations.

LAMBDA’s annealing algorithm begins with a random proposed
parameter set P ¼ fA;B;C;Sg which has a negative log-likelihood,
L. Then a proposed parameter draw P0 is created where each
parameter element in P is multiplied by an independent random
�10% to þ10% adjustment drawn from a uniform distribution. The
negative log-likelihood L0 of the model with P0 is then computed.
The proposed parameter set is accepted with probability b, where

b ¼ e½ðL�L0Þ=s� (3)

If the proposed parameter set is accepted, then P0 replaces P, and
L0 replaces L, and the process is repeated for the next parameter,
and iterated K times. s is lowered every K/100 iterations and the
search converges gradually on the lowest L. The annealing method
robustly finds the ML values and takes only slightly longer than CLS
estimates for the same number of parameters.
3.3. Constraining the interaction matrices

If we allow every element within the interaction matrices, B
and C, to be non-zero, then we are presuming that all species and
covariates in the system interact. In a natural community, many
species will interact so weakly that their interaction strength is
effectively zero. From a statistical perspective, elements are
“effectively zero” if their presence does not improve the fit of the
model. If we can reduce the number of parameters by forcing
certain interactions to be zero without reducing the fit of the model,
then we can improve the estimate quality for the non-zero
interactions. LAMBDA provides two ways to do this. First, the
investigator can manually define which interactions to include and
which to exclude. Second, LAMBDA can perform an iterative
search, zeroing out different B and C elements to find the model
that most parsimoniously explains the data (Ives et al., 2003;
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Table 1
Parameter values for the interactions between the members of the sample
community. The four strongest interactions have been highlighted in boldface text.

Lg. Phyto. Sm. Phyto. Daphnia Non-Daphnia

(A) The known interactions, as programmed in the simulation. These are taken
from the “low planktivory” case in Ives et al. (2003)

Lg. Phyto. 0.50 L0.36 0 0
Sm. Phyto. 0 0.07 �0.02 �0.10
Daphnia 0 0 0.76 0
Non-Daphnia 0.10 0 0 0.56

(B) Estimated interactions (�1 SD) using the CLS technique on 100 simulated
datasets

Lg. Phyto. 0.45 (0.09) L0.41 (0.12) 0 (0.05) 0 (0.05)
Sm. Phyto. 0 (0.06) 0.02 (0.10) �0.01(0.04) �0.05 (0.06)
Daphnia 0 (0.12) 0 (0.11) 0.71 (0.09) 0 (0.07)
Non-Daphnia 0 (0.09) 0.07 (0.17) �0.01 (0.07) 0.51 (0.08)

(C) Estimated interactions (�1 SD) using the simplex ML technique on 100
simulated datasets

Lg. Phyto. 0.43 (0.13) L0.35 (0.21) 0.02 (0.09) 0.03 (0.09)
Sm. Phyto. 0.02 (0.8) 0.02 (0.13) 0.01 (0.07) �0.02 (0.09)
Daphnia 0.02 (0.18) 0.06 (0.22) 0.71 (0.19) 0.07 (0.17)
Non-Daphnia 0.05 (0.16) 0.18 (0.32) 0.07 (0.15) 0.58 (0.22)

(D) Estimated interactions (�1 SD) using the simulated annealing ML technique
on 100 simulated datasets

Lg. Phyto. 0.44 (0.10) L0.41 (0.12) 0 (0.06) �0.1 (0.08)
Sm. Phyto. 0 (0.07) 0.01 (0.10) �0.01 (0.06) �0.06 (0.06)
Daphnia 0.02 (0.14) 0.01 (0.17) 0.71 (0.09) 0 (0.01)
Non-Daphnia �0.02 (0.11) 0.11 (0.19) �0.01 (0.08) 0.51 (0.09)
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Hampton and Schindler, 2006). The algorithm creates a large
number (default 500) of models in which different B and C
elements are randomly set to zero. Each model is fit to the data
and the model with either the lowest Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC), at the user’s
discretion, is chosen.

3.4. Bootstrapped confidence intervals

LAMBDA incorporates parametric bootstrapping (Ives et al.,
2003) to calculate confidence intervals on estimated parameters.
Parametric bootstrapping uses the estimated model to simulate
new bootstrapped datasets. The parameters are estimated from
each bootstrapped dataset to create a set of bootstrapped param-
eter sets.

4. LAMBDA performance tests

We examined the variability of the parameter estimates and
stability properties using simulated data. The data were simulated
using MAR(1) models for two different lake communities: Peter
Lake,WI (Ives et al., 2003) and LakeWashington,WA (Hampton and
Schindler, 2006). The Peter Lake dataset (Fig.1)was used to examine
the bias and variability of the parameter estimates. The Lake
Washington dataset was used to determine the speed and scaling of
the three estimation methods versus the community size p.

The Peter Lake community has four interacting species (Ives
et al., 2003; Table 1A). Using LAMBDA’s simulation module, we
simulated 100 replicate time series for the Peter Lake plankton
community. For the simulation, we used the A estimates
(A¼ [0.6497, 1.0628,1.5055, 2.4089]) and B estimates (Table 1A) for
Peter Lake but did not include any covariates (C ¼ 0) in this simu-
lation. We used simulations with process error variance S ¼ s2I,
where I is the p � p identity matrix and s2 was drawn from
a random uniform distributionwith a mean 0 and variance of 1. The
starting abundance for each species i in the community was drawn
randomly from a normal distribution with mean equal to half the
equilibrium population density (from mN) for species i and standard
deviation equal to �5% of the mean. We simulated 200 time steps
and dropped the first 100 time steps to remove initial condition
effects. We then used LAMBDA to estimate the parameters (A, B)
from the simulated datasets, as well as the stability properties.
Fig. 1. An example simulation of the MAR(1) process in a four-species community,
using the Peter Lake parameters. See text for details.
To compare the performance across model size, we used the A,
B, and C matrices from a 14-species system in Lake Washington
(Hampton and Schindler, 2006). Our simulations were performed
as above with 100 replicate datasets, and parameters and stability
properties estimated for each simulation replicate. We then re-ran
the estimation steps on the same simulated data, but successively
removed one species. Each time a species was removed, we per-
formed the parameter and stability estimates again. The results
were compared across the estimation methods to determine how
the number of species in the model affects performance.

Although we use only these two datasets to demonstrate
LAMBDA’s capabilities, the toolkit can be used to for many other
community analyses. For example, Hampton et al. (2008) used
LAMBDA to study changes to the trophic structure of Lake Baikal.

5. Results

All estimation methods (CLS, simplex ML, and annealing ML)
gave good average estimates of the model parameters for the Peter
Lake species interaction matrix B (Table 1). The true underlying
interaction matrix had three strong positive interactions and one
strong negative interaction (Table 1A). These same four interactions
Table 2
Stability properties of the system. The variance in the stationary distribution relative
to process error was calculated as det(B)2/p. Return rates were calculated as max(lB)
and max(lB5B); reactivity was calculated as �tr½S�=tr½VN� and max(lB0B) � 1.
Stability properties were estimated using conditional least squares (CLS), or
maximum-likelihood with either simplex search (ML-S) or simulated annealing
(ML-A). Estimates are reported as the mean (�1 S.D.) across 100 simulated
replicates.

True CLS
Estimate

ML-S
Estimate

ML-A
Estimate

Variance: det(B)2/p 0.12 0.13 (0.06) 0.14 (0.06) 0.12 (0.06)
Return Rate of m: max(lB) 0.76 0.72 (0.07) 0.81 (0.13) 0.73 (0.07)
Return Rate of V: max(lB5B) 0.57 0.53 (0.10) 0.66 (0.21) 0.53 (0.11)
Reactivity: �tr½S�=tr½VN� �0.60 �0.60 (0.07) �0.45 (0.28) �0.59 (0.08)
Reactivity: max(lB0B)�1 �0.43 �0.38 (0.13) �0.04 (0.38) �0.32 (0.13)



Fig. 2. A comparison of performance (time taken to conduct identical analyses) for the
different estimation methods with increasing numbers of variates (simulated species).
See text for details.
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were identified as the strongest by all three estimation techniques,
and their magnitudes were estimated towithin�14% (Table 1BeD).
The CLS and annealing ML techniques produced nearly identical
results (Table 1B and D). The simplex ML method produced similar
mean parameter estimates, but its variancewas much higher (Table
1C). The CLS estimation method gave the most accurate estimates
of all five stability properties (Table 2). Simplex ML estimation
produced extremely high variance on the estimates of reactivity
and return rate (Table 2).

Computation time using the CLS method on the Lake Wash-
ington dataset increased linearly with the number of species p (on
the order of 3p); using the annealing computation time increased
on the order of p2; and using the simplexmethod computation time
increased on the order of p3 þ p2 (Fig. 2).

6. Discussion

This paper demonstrates how our software package, LAMBDA,
can analyze multivariate time series data to estimate community
interactions and stability using powerful statistical algorithms (Ives
et al., 2003). With plankton communities as our example, we
illustrate that using LAMBDA, community interaction matrices and
stability properties can be successfully estimated (Tables 1 and 2).
The plankton communities were used to illustrate LAMBDA
performance, but obviously, the results will always depend on
community size and time series length.

Based on our simulations, CLS regression is the fastest (Fig. 2)
and most accurate (Tables 1 and 2) estimation method. On the
other hand, the Simplexmethodwas entirely unsatisfactory: it took
far longer (Fig. 2) and produced more variable estimates (Tables 1
and 2) than the other methods. If one desires to use ML methods,
we therefore recommend the simulated annealing method.

Estimating community interactions and stability are central to
the study and understanding of community dynamics (EPAP, 1999;
Wootton and Emmerson, 2005). The MAR(1) model developed by
Ives et al. (2003) provides a statistical framework for estimating the
community interaction matrices as well as a variety of community
stability properties. MAR(1)models can thus be usedwith the types
of dataset to which ecologists and managers most commonly have
access e long term abundance time series. In addition, the MAR(1)
framework allows ecologists to study how environmental cova-
riates drive the community dynamics. Recently, MAR(1) models
have been used in this way to understand the mechanisms by
which nutrient loading and climate change have affected fresh-
water plankton communities (Hampton et al., 2008, 2006).

Although the MAR(1) model is a powerful tool, it has limitations
from which LAMBDA is not immune. For example, LAMBDA calcu-
lates a single stationary distribution, but a system may have more
than one stable state (Ives et al., 2008). Additionally, key environ-
mental drivers must be carefully identified, because environmen-
tally-driven synchrony can alter B estimates (Mutshinda et al.,
2009). Finally, although we do not address observation error
directly here, it clearly can have an impact (Wootton and
Emmerson, 2005), and should be quantified to the extent possible.

Because of their generality, and because they can make use of
commonly available datasets, MAR(1) techniques can be applied to
many systems, provided one has the computational tools to
perform the analysis. The LAMBDA software package provides
these tools. With LAMBDA, ecologists have a toolbox of powerful
statistical tools for analyzing multi-species time series data.
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