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Abstract. Forecasting the risk of population decline is crucial in the realm of biological
conservation and figures prominently in population viability analyses (PVA). A common form
of available data for a PVA is population counts through time. Previous research has
suggested that improving estimates of population trends and risk from count data depends on
longer observation periods, but that is often impractical or undesirable. Making multiple
observations within a single time step is an alternative way to gather more data without
extending the observation period. In this paper, we examine the trade-off between the length
of the time period over which observations of the population have been taken and the total
number of observations or samples that have been recorded through an analysis of simulated
data. We found that when the ratio of process error to measurement error variance is high,
more precise estimates of quasi-extinction risks can be obtained if replicated observations are
taken at each time step, but when the ratio is low, replicated observations add little benefit in
improving precision. These results can be used to efficiently design effective monitoring
schemes for species of conservation concern.
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INTRODUCTION

Estimates of a species’ risk of decline are crucial in

identifying species of highest concern and to prioritize

how quickly managers must act to prevent severe

declines. For example, the IUCN (International Union

for Conservation of Nature) classifies species as critically

endangered when they are projected to decline by 80%

over 10 years or three generations (IUCN Standards and

Petitions Subcommittee 2014). As part of the classifica-

tion process, the IUCN also requires a description of the

uncertainty around these projections. Such projections

and the surrounding uncertainty depend on estimates of

the trend of population abundance and the variation

around that trend. The accuracy and precision of these

estimates rests in part on the quality and structure of

data that have been gathered, which for many species of

conservation concern take the form of population

counts through time, developed from population sur-

veys. Clearly more data improve the quality of an

assessment, but given that a limited number of

population surveys may be possible, for financial or

logistical reasons, how those are structured in time may

impact the assessment as well. The surveys could be

spread through time, perhaps with one survey every few

years, or could all occur within a small time frame with

multiple surveys each year. Understanding the effect of

monitoring design on population assessments can help

managers and conservationists to design more effective

monitoring programs.

In recent years, ecologists have turned toward state-

space models as a way to incorporate both environmen-

tal stochasticity (or process errors) and observation (or

measurement) errors, while also accommodating missing

data (Knape and de Valpine 2011, Pasinelli et al. 2011,

Wilson et al. 2011, De Valpine 2012, Nadeem and Lele

2012, Russell et al. 2012, Hefley et al. 2013a, Larson et

al. 2013). A state-space model consists of one compo-

nent that describes the population process, including

stochasticity, and a second component that models the

observation process, including observation error. State-

space models have outperformed process-error-only and

observation-error-only models in a variety of noncon-

servation situations (De Valpine 2002, De Valpine and

Hastings 2002, Lele et al. 2007). They have been applied

in a variety of ecological contexts, including fisheries

(Meyer and Millar 1999, Millar and Meyer 2000, De

Valpine and Hilborn 2005, Hinrichsen 2009, Russell et

al. 2012), bird populations (Williams et al. 2003, J. W.

Connelly et al. 2004 unpublished report; Jamieson and

Brooks 2004, Dennis et al. 2006, Hefley et al. 2013b),

animal movement (Newman 2000, Buckland et al. 2004,

Newman et al. 2006, Buckland et al. 2007), and

plankton communities (Ives et al. 2003).

A variety of state-space models have been described

and utilized recently, including diffusion approximation

models (Dennis et al. 2006, Holmes et al. 2007), N-
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mixture models, (Kery et al. 2009, Dail and Madsen

2011, Sólymos et al. 2012, Hefley et al. 2013a), as well as

other formulations (Nadeem and Lele 2012, Hefley et al.

2013b). The state models all include a few demographic

parameters and some process error variance, whereas

the observation model usually takes one of three forms

for the observation error structure: a log-normal,

binomial, or Poisson model. In practice, some combi-

nation of biological knowledge and model selection can

determine the most appropriate model to use. We chose

to focus on a common diffusion approximation model

that has been modified into a state-space model (Dennis

et al. 2006), sometimes referred to as a corrupted

stochastic exponential growth model, CSEG (Holmes et

al. 2007). The purpose of this work was to investigate

the impact of data structure on the precision of trend

and quasi-extinction risk using the CSEG model, which

has been validated and shown to correctly estimate

quasi-extinction risk for large data sets of population

count data from species of conservation concern. This

model provided unbiased and fairly precise estimates of

the risk of quasi-extinction for vertebrate species of

conservation concern with declining populations when

forecasting large declines, e.g., 50% and 80% (Holmes et

al. 2005, 2007). Simulation studies have also shown that

the quasi-extinction risk can be reliably approximated

with a CSEG model in the presence of age-structured,

density-dependent, spatially structured metapopulation

or predator–prey population dynamics, as well as

imperfect detection (Holmes and Semmens 2004, Sabo

et al. 2004, Holmes et al. 2007, Sabo and Gerber 2007).

If one is working with data that strongly violate the

assumption of log-normal observation error or have

strong cycles, a CSEG model is not appropriate; our

results should not be assumed to extend to non-CSEG

models applied to non-CSEG-like data.

Previous research using CSEG models has suggested

that improving estimates of population trends and

process variance depends on longer time series (Fieberg

and Ellner 2000, Holmes et al. 2007, Ellner and Holmes

2008, Humbert et al. 2009, Connors et al. 2014), but

there are often limits to the number of surveys that can

be conducted and collecting a longer time series may be

undesirable if it means delaying an assessment. Making

multiple observations within a single time step is an

alternative way to gather more data without extending

the observation period. Several recent studies have

demonstrated how repeated measurements can improve

the uncertainty and identifiability of CSEG parameter

estimates. Dennis et al. (2010) used a form of the CSEG

model that includes density dependence to demonstrate

how one additional observation per time step leads to

steeper likelihood profiles for each parameter, meaning

that parameters are more identifiable, even if the time

series were half as long. Hinrichsen (2009) examined the

effect of incorporating data from nearby populations

and assuming correlated process errors to improve the

estimates of mean trend and process error variance.

Knape et al. (2013) explored the effect of a range of

spatial replicates (2–10) on parameter estimates from a

model similar to the model employed by Dennis et al.

(2010), using several different maximum likelihood

techniques. They demonstrated improved estimation

performance with an increasing number of spatial

replicates for three different time series lengths.

Although the benefits of repeated measurements and

longer observation periods are clear, researchers and

managers must often design a monitoring program

under financial constraints: replicated observations are

not free, and the best allocation of surveys across time

and space is a key question for monitoring design. Our

paper examines the trade-offs between the total length of

the observation period and the number of total

observations on each parameter estimate, as well as

the impact of these trade-offs on estimates of the

probability of quasi-extinction, under a variety of

relative sizes of process error and measurement error

variances. We consider a range of scenarios, from short

to long time series and from multiple observations

within years to years with missing data. Our analysis

allows researchers to weigh the effects of different

monitoring design choices on the expected uncertainty

of various viability metrics when limited resources must

be allocated across time and space. For managers tasked

with making decisions about which species are at the

greatest risk and how quickly to take action, a shorter

monitoring period before an assessment could make the

difference between acting in time to save a species from

decline or not.

This paper proposes to examine the effects of two

different structures in the data—the length of the

observation period (e.g., number of years) and the total

number of observations—on the estimates of the

probability of quasi-extinction (Pe). Process error and

measurement error are difficult to disentangle (Dennis et

al. 2006, Knape 2008), but doing so is crucial in

estimating the risk of quasi-extinction, because only

process error impacts that risk. Longer observation

periods can provide less biased and more precise

estimates of variance in process error (Holmes et al.

2007, Ellner and Holmes 2008), but more observations

per time step, rather than a longer observation period,

may provide more precise estimates of variance in

measurement error, leading in turn to more precise

estimates of process error variance.

In this paper, we will address three questions related

to the design of monitoring programs designed to

generate population counts.

1) How do changes in the data structure (longer time

series vs. shorter with repeated observations) impact

the bias and precision of parameter estimates such as

the rate of population decline (l), process error

variance (r2), and measurement error variance (s2 )?
2) Under what conditions (i.e., relative size of process

error and measurement error variance) do changes in
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the data structure alter the bias and precision of

estimates of a population’s risk of decline?

3) How quickly can one gather enough data to make a

reasonably precise estimate of the probability of

quasi-extinction?

It should be noted that, in this paper, precision refers

to how reproducible an estimate is across a series of

simulations (coefficient of variation across simulations),

rather than the size of the standard errors for any

particular simulation.

METHODS

CSEG model

The CSEG model is

log Xtþ1 ¼ logXt þ lþ et; et ; Nð0;r2Þ ð1Þ

logYt ¼ logXt þ gt; gt ; Nð0; s2Þ: ð2Þ

This state-space model describes the exponential

growth of a population’s abundance, Xt, at time t, with

the mean long-term annual growth rate, l, as well as

process error, et, due to environmental stochasticity.

Observed counts, Yt, are based on the state, Xt, overlaid

with another form of random noise, gt, which derives

from measurement or observation error. Both et and gt

are assumed to be drawn from a normal distribution

with mean 0 and variance r2 and s2, respectively. To
include m observations of a state at each time step, Eq. 2

can be extended to describe a multivariate state-space

model:

logYt ¼ Zlog Xt þ Ft; ð3Þ

where Yt is an m3 1 vector of the multiple observations

taken at time t. Z is an m 3 1 vector of 1’s, describing

that all the observations are of the same underlying

(population) state. Ft is also an m 3 1 vector of

measurement errors, assumed to come from a multivar-

iate normal distribution with mean 0 and covariance

matrix R. These measurement errors could be indepen-

dent, identical, or correlated within each time step.

Further details of this model can be found in Hinrichsen

and Holmes (2010).

Diffusion approximation methods have been used in

conservation biology for over 20 years to estimate

several PVA metrics, including mean time to extinction,

distribution of extinction times and the probability of

dropping below a quasi-extinction threshold (Dennis et

al. 1991, Lande et al. 2003, Schultz and Hammond 2003,

Holmes 2004, Snover and Heppell 2009). The probabil-

ity of quasi-extinction over a given time-horizon, T, is

estimated by using the inverse Gaussian distribution of

first passage times for Brownian motion with drift

(Dennis et al. 1991, Fieberg and Ellner 2000). This

probability is given by:

Pe ¼ UðU � VÞ þ expð2UVÞUð�ðU � VÞÞ ð4Þ

where U is the standard normal cumulative distribution

function, U ¼�l
ffiffiffi

T
p

/r, V ¼ a/r
ffiffiffi

T
p

, and a is log(initial

population abundance/quasi-extinction threshold). Note

that because the measurement errors do not impact the

true state’s trajectory through time, their variance does

not impact the probability of quasi-extinction. Diffusion

approximation techniques make the assumption, as do

most forecasting methods, that the past is representative

of the future, or that the population will continue to

experience the same mean growth rate, l, and the same

demographic stochasticity described by the process error

variance, r2. This type of estimate is used as a ‘‘baseline’’

in a PVA, namely ‘‘if conditions as reflected in the time

period used for estimation continue, what is the

population risk of quasi-extinction?’’ This is another

reason that a long time series can be undesirable; it

means that one is more likely to include data (the far

past) that are not reflective of the conditions that the

population will experience in the near future.

Simulations

To study the impact of the length of a observation

period and the number of total observations, five lengths

of observation periods (5, 15, 30, 45, and 60 time steps)

and five different levels of total observations (15, 30, 60,

75, and 90) were considered. For each combination of

observation period length and total observations, 500

simulated time series were generated from predeter-

mined rates of decline, process error variance, and

measurement error variance. For some combinations,

this led to one observation at every time step, for others

there were multiple observations at each time step, and

for some there were time series with missing observa-

tions for some time steps. In the last case, the placement

of the missing values was randomized for each simulated

time series, perhaps equating to a scenario with unequal

funding through time.

The parameter values were chosen based on previous

studies that have estimated l and r2 from real

populations (Brook et al. 2000, Lindley 2003, Staples et

al. 2004, Dennis et al. 2006, Holmes et al. 2007). The vast

majority of these species were terrestrial mammals and

birds. The rates of decline correspond to deterministic

declines of about 30% and 50% over 20 years (l¼�0.02,
�0.04), which would lead to listings as vulnerable and

endangered under the IUCN criteria (IUCN Standards

and Petitions Subcommittee 2014). We chose parameter

values such that the sum of the process error and

measurement error variances was always 0.1 (r 2 þ s 2 ¼
0.1) and the ratio of process- to measurement-error

variance ranged from 0.05 (relatively little environmental

stochasticity) to 5 (relatively high environmental stochas-

ticity). This led to process error variances in the ranges

discussed by Holmes et al. (2007), Ellner and Holmes

(2008) and Humbert et al. (2009). Simulations began with

an initial population of exp(10), and were allowed to

burn-in for 100 time steps before simulated observations
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began. This resulted in initial population sizes of around

400 and 3000, depending on the value of l.
We generally equate a time step to one year, primarily

because that is the timescale on which many species

reproduce. For some species that reproduce faster, it

may make sense to think of time steps in terms of

months, or weeks, or possibly days. For some species

that reproduce much more slowly, the appropriate time

step may be several years, or possibly a decade.

However, for most species a year is the appropriate

time step, both because it is their reproductive timescale,

but also because many species are affected by the

seasons, and therefore it is appropriate to estimate their

trend on a scale that encompasses all four seasons.

Therefore, in this paper we use time step and year

interchangeably.

Parameter and extinction metric estimation

Each simulated time series was analyzed to estimate

the trend (l), process error variance (r 2) and measure-

ment error variance (s 2), using maximum likelihood

estimates obtained from the Kalman filter and EM

(expectation–maximization) algorithm, implemented by

the MARSS package (Holmes et al. 2014) for R

software (R Development Core Team 2009). Other

methods were evaluated (see Appendix A), but the

MARSS algorithm performed the best. In our simula-

tions and estimating models, it was assumed that the

measurement errors within each time step were inde-

pendent and unbiased (centered around 0), so the

observation errors could depend on the patchiness or

within-year movement of the population, or could be

due to measurement error, or some combination. If

within-year samples were taken from different locations

(e.g., three sampling stations, each of which was visited

every year, or two were visited a year in on a rotating

schedule, etc.), the CSEG model can accommodate that

by estimating a bias parameter for each location

(relative to one of the locations). However, in an

analysis focused on estimating l and r 2, one can center

all of the time series and eliminate the need to estimate

extra (bias) parameters. Therefore, these results are

applicable to designs that sample the same location

multiple times, or multiple locations once within a time

step, as long as the within-year observations can be

considered independent.

For each of the 25 combinations of observation

period length and total number of observations, the

coefficient of variation (CV) of the parameter estimates

across all simulations was calculated as a measure of

precision, defined as the standard deviation of the

estimates divided by the true parameter value. From

these 30 combinations, we used loess smoothing to

interpolate a contour plot to examine the trade-offs in

precision that arise from changing the length of an

observation period and changing the total number of

observations. Relative and absolute errors for the

parameter estimates were compared across the lengths

of observation periods and the number of total

observations.
Based on the CSEG parameter estimates, a probabil-

ity of quasi-extinction was calculated for each simulated
time series. We examined the probability that simulated

populations would decline by 30%, 50%, and 80% over
30- and 50-year horizons, which begin from the end of

the observed time series. The impacts of the length of the
observation period and total number of observations
were similar across all three forecast horizons, so we

only present results from the 30-year time horizon (see
Appendix B for additional results). The precision of

these quasi-extinction estimates was examined by
comparing the coefficient of variation of the Pe estimates

across each combination of length of the observation
period and total number of observations, calculated in

the same fashion as the CV of the parameter estimates.
Using as a reference the case of an observation period of

30 years with one observation every year, we interpo-
lated a contour plot to show the improvement in

precision when the available data differed from that
reference case. The effects of length of the observation

period and total observations on the precision of quasi-
extinction probabilities were similar for l¼�0.02 and l
¼�0.04, and across the three levels of potential decline,
so we only present results from one group of simulations
(l ¼�0.02 and a 50% decline; but see Appendix B for

full results).

RESULTS

Parameter bias

Estimates of the population’s mean rate of decline

were unbiased (centered over the true value) regardless
of the length of the observation period or the total

number of observations. In most simulated scenarios,
estimates of process and measurement error variance

were also unbiased. However, when measurement error
variance was very small relative to the process error

variance (r2/s2 ¼ 5), and there was less than one
observation per time step, we tended to overestimate
measurement error variance, probably because the data

contained little information about that parameter. This
in turn led to an underestimate of the process error

variance. This bias was reduced if there were one or
more observations per time step. Similarly, when the

process error variance was relatively quite small (r 2/s 2¼
0.05), we tended to overestimate the process error

variance and underestimate the measurement error
variance, particularly if the total number of observations

was low, regardless of the length of the observation
period (see Appendix B for supporting figures).

Parameter precision

The precision of parameter estimates depended on
different structures in the simulated data, depending on
which parameter we focused on. Estimates of the

population’s mean rate of decline (l) became more
precise as the observed period became longer, but were
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not affected by the number of total observations, as seen

in the nearly vertical contour lines of the top row in Fig.

1. On the other hand, the precision of measurement

error variance estimates (s2) improved primarily when

the total number of observations was increased,

regardless of the length of the observation period, as

seen in the horizontal contour lines of the bottom row of

Fig. 1. The improvements in the precision of estimates of

l and s2 show diminishing returns as the length of the

observation period or the total number of observations,

respectively, were increased. In contrast, the precision of

process error variance estimates was improved by both a

longer observation period and an increasing number of

total observations, illustrated by the diagonal contour

lines of the middle row of Fig. 1. As process error

variance increases, the contour lines shift from closer to

horizontal to closer to vertical, depicting less improve-

ment in precision with an increasing number of

observations, although some still exists.

Probability of quasi-extinction

The probabilities of quasi-extinction were estimated

with little bias for all three levels of decline and all

combinations of observation period length and number

of total observations (see Appendix B for relevant plots).

Estimates that were biased low, such as the probability

of an 80% decline when the process error variance was

relatively high and the total number of observations was

low, correspond to cases in which the process error

variance was underestimated (often accompanied by

overestimates of the measurement error variance). This

illustrates the importance of accurate estimates of

process error variance when conducting this type of

PVA. The precision improved for all three levels of

FIG. 1. Contour plots of the coefficient of variation (CV) of the parameter estimates for rate of decline (top row, l), process
error variance (environmental stochasticity; middle row, r 2), and measurement error variance (observation error; bottom row, s 2),
when the true value of l is�0.02. Each column corresponds to a different process- to measurement-error variance ratio (r 2/s 2).
The dashed line corresponds to scenarios where one observation is taken every time step. There are no units for the x-axis
observation period; although a year is the appropriate time step for most species, modeling also applies to shorter time steps (e.g.,
weeks for phytoplankton).
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possible decline as the observation period length was

increased, and there was a much smaller effect on the

precision due to the total number of observations.

However, the relative effects of more total observa-

tions and longer observation periods on the precision of

Pe depended on the ratio of process- to measurement-

error variance. When that ratio was small (relatively

little process error variance), the precision of Pe

estimates improved primarily as a result of increasing

the observation period. As that ratio grew larger (i.e.,

relatively more variation due to environmental stochas-

ticity), the same precision could be obtained with a

shorter observation period, provided additional samples

were taken (Fig. 2). For instance, if this ratio were high

(i.e., r2/s2¼ 5), then compared to the reference case of a

30-year time series with one observation a year, the

precision of estimating the risk of a 50% decline was

improved by 20% if observations were taken twice a

year. Although there are twice as many data, they do not

contain twice as much information about the population

dynamics, but this does increase the confidence that a

manager should have in the results by improving the

estimate of measurement error variance and, thus, of the

process error variance. However, increasing the number

of observations to three per year resulted in very little

additional improvement in precision, illustrating the

diminishing returns that come with more repeated

measurements. Looking at these results another way,

the same precision as the reference case could be

obtained by increasing the total number of observations

from 30 to 40 and collecting observations twice a year

for 20 years rather than once a year for 30 years (Fig. 2).

DISCUSSION

The three parameters in the CSEG model are affected

differently by different structures in the data. Under

almost all of the scenarios that we tested, the parameter

estimates were unbiased, but the length of the observa-

tion period and the total number of observations

influenced the precision of the parameter estimates in

contrasting ways. The rate of population decline is

estimated more precisely with a longer observation

period, whereas the total number of observations is

almost irrelevant. This results supports previous simu-

lation studies that have shown estimates of population

trends to be more precise with longer time series, but

that precision is unaffected by the number of missing

observations in a given time series length (Humbert et al.

2009).

The effect of data structure on estimates of process

error, or environmental stochasticity (r2), changes as the

ratio of process- to measurement-error variance shifts

(middle row of Fig. 1). When this ratio is low, precision

can be improved appreciably with more total observa-

tions—via either more observations per time step or one

observation per time step and a longer observation

period. However, as this ratio grows, the length of the

observation period becomes more important, particu-

FIG. 2. Contour plots of the percentage improvement to the
coefficient of variation (CV) of the estimates of the probability
of a 50% decline in 30 years, compared to a reference case of a
30-year observation period with one observation each year
(marked with a solid triangle). The white contour area
corresponds to the same level of precision as the reference
case. Areas to the right of that white contour have a more
precise estimate of Pe (probability of quasi-extinction) than the
reference case, whereas areas to the left have a less precise
estimate. The dashed and dotted straight lines correspond to
scenarios where one and two observation(s) are taken every
time step, respectively. Each facet corresponds to a different
ratio of process error to measurement error variance (r2/s2).
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larly when the ratio of process to measurement error

variance is 1 or greater. If the observation period is long

enough, more total observations can still improve the

precision of r 2 estimates, but not as markedly as when

the r2/s2 ratio is smaller.

Finally, the measurement error variance is estimated

more precisely as the total number of observations is

increased. For higher ratios of process error to

measurement error variance, precision of the estimate

of measurement error variance begins to deteriorate

rapidly in longer time series once observations are taken

less than once per time step, and the estimates are more

biased (see relevant figures in Appendix B). Because

measurement errors do not feed back into the true state

of the system, longer time series provide no additional

information for estimating the measurement error

variance. In fact, the most precise estimates of measure-

ment error variance can be obtained from a very short

time series with a large number of (independent)

observations taken at each time step (bottom row of

Fig. 1). This suggests a combination strategy of

deploying observations through time, which will be

discussed further.

It is encouraging to note that the quasi-extinction

estimates are unbiased, but in practice a biologist will be

assessing one data set, and making one quasi-extinction

estimate. Thus precision is most important, and the data

structure that provides a more precise estimate will allow

the biologist to have more confidence in the result.

Consistent with results from previous studies (Holmes et

al. 2007), we found that the precision of quasi-extinction

estimates deteriorates rapidly when time series are less

than 20 time steps for all simulated scenarios. This 20-

time-steps threshold probably arises from the precision

of a population’s estimated rate of decline (l), which
also drops off precipitously with less than 20 time steps

of observations, regardless of the ratio of process error

to measurement error variance (top row of Fig. 1). This

threshold of observation length almost certainly depends

on r2; we used r2 values in our simulations that are

consistent with estimates from small to large terrestrial

vertebrates. If r2 is larger than our simulated values, we

expect the 20-year threshold to increase, whereas if r2 is

smaller, the threshold will probably shrink as well. It is

important to note that estimates of quasi-extinction will

always become more precise with a longer time series, so

if quasi-extinction risk is important, a long-term

monitoring program will be needed.

However, for certain populations, repeated observa-

tions within, and potentially beyond, those 20 years can

improve the precision of quasi-extinction estimates.

Given at least a 20-year observation period, how the

precision of quasi-extinction estimates changes with the

length of the observation period and total number of

observations depends on the relative strengths of process

and measurement error variances. When the risk of

quasi-extinction is dominated by chance events, such as

when V¼ a/r
ffiffiffi

T
p

(from Eq. 4) is quite small, an estimate

of Pe depends less on the estimate of the population

trend, l, and more on the estimate of process error

variance, r2 (Fieberg and Ellner 2000). In our simula-

tions, these scenarios occur when the level of decline is

moderate (30–50%) and process error variance is

relatively high (r2/s2 � 1). These are also the scenarios

in which multiple observations within a time step can

improve the precision of quasi-extinction estimates by

providing more precise estimates of the measurement

error variance and, consequently, the process error

variance. Projecting forward 30 years, this corresponds

to the lower two panels in Fig. 2. When r2/s2¼5, similar

precision in quasi-extinction estimates can be obtained

with 20 years of data, if two observations are taken each

year, compared to a sampling regime of one observation

each year for 30 years. Obtaining the same precision

requires 10 more observations (40 vs. 30), but an

analysis performed 10 years sooner could lead to

conservation actions being taken a decade earlier, which

could make a large difference for the future health of the

population.

For managers tasked with prioritizing resources for

monitoring programs, an understanding of the relative

strengths of environmental stochasticity vs. other

variability can aid in designing the most efficient

monitoring scheme. Measurement error will most likely

not be eliminated (Holmes 2001), but if the process error

variance is comparatively large, managers should

consider implementing a monitoring design with multi-

ple observations taken each year. Due to the diminishing

returns, a sampling regime of two or three observations

per year may make the most sense from a cost–benefit

perspective, depending on the cost of obtaining addi-

tional observations. Whether those multiple observa-

tions should come from the same location or different

locations should be determined by discussions among

the field biologists as to what design will generate the

most independence between the multiple observations.

When little is known about the relative strengths of

process and measurement errors, we recommend a

combination approach that involves taking multiple

samples in each of the first few years. An analysis at that

point should yield precise estimates of the measurement

error variance. Based on estimates of the process error

variance, which may be quite imprecise at that point, as

well as knowledge of process error variances for similar

species, the ratio of process error to measurement error

variance can be estimated, and a more efficient

monitoring design can be implemented going forward.

If process errors are relatively small, a monitoring

program with a single observation per year may be

sufficient. If process errors are on the same scale as, or

are much larger than, measurement errors, one of two

monitoring designs may be useful. The first would be

continuing to collect at least two observations each year.

The second would be to collect a single observation in

most years, but periodically collect several observations

in a single year. We did not test this approach in our
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simulations, but it should provide biologists with

information about the measurement error variance,

which will then inform estimates of process error

variance and therefore the risk of quasi-extinction.

One factor that was not considered was the possibility

of correlation among the observations at each time step,

which reduces the amount of information contained in

each repeated observation. This might occur, for

example, if an environmental driver such as temperature

or time of day is affecting the detection probability, such

that all observations in a given year are affected

similarly, either because it is a particularly cold year,

or the first survey is always done in the morning and the

second in the evening. If such correlation exists, it is

difficult to estimate from count data alone. If one

suspects that this is occurring, including the most likely

covariate(s) in the model to explain the observed bias in

detectability can remove the correlation between the

samples. Such scenarios were beyond the scope of this

paper, but should be considered by managers and

biologists on a case-by-case basis. The model framework

that we used (MARSS models) can easily incorporate

observation error covariates or they can be included in

the step during which the raw surveys are converted to a

population estimate.

In a world with limited resources to direct toward

conservation actions, reliable and timely estimates of

quasi-extinction risks are crucial. Designing efficient

monitoring programs is essential for species of conserva-

tion concern, so as to efficiently use scarce resources for

data collection. We have shown how, for some species

and populations, designs with repeated measurements can

reduce the length of time spent observing the population

before identifying it as at risk. This can allow appropriate

conservation actions to be taken sooner, potentially

influencing how successful those actions are and whether

the species or population will recover.
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