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JUCN Red List Criteria

o Criteria A2: “A reduction of at least xx%,
projected or suspected to be met within the next
XX years....”

« Criteria C1: “Population estimated to number
less than xx and an estimated continuing decline
of at least xx% within xx years....”

e Criteria E: “Quantitative analysis showing the
probability of extinction in the wild is at least xx%
within xx years...”



Quasi-extinction risk
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The nature of variability In
population trajectories
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What might produce these
patterns?

o EXxtrinsic forces: Increased variability due to
accumulation of rare events with time.
Populations are tightly regulated by density-
dependence; variance doesn’t increase with
time due to intrinsic forces.

 |Intrinsic forces: Year-to-year variability in growth
rates caused increased variability with time — not
extrinsic forces. Populations are regulated by
density-dependence, but in a stochastic process,
the effects of year-to-year variability dominate.



Using the Global Population
Dynamics Database to study these
patterns

* Inchausti and Halley 2003 “On the relation between
temporal variability and persistence time in animal
populations”

« Akcakaya, Halley, Inchausti 2003 “Population-level
mechanisms for reddened spectra in ecological time
series”

A simple model of annual variabllity in growth rate +
measurement error or annual variability + weak
density-dependence can explain the “red-shift” pattern
In the GPDD




stochastic age-structured models:

Tuljapurkar 1980s
f4*eh

f3*cd

Se*881*8 82*8 83*8

Ni..=N*exp(ut+e) where
¢ ~ N(0,o sqrt(t))



Dennis, Munholland, Scott 1991.
How this all applies to conservation
biology

A really simple diffusion approximation for
the stochastic exp model can predict quasi-
extinction in age-structured models (Lande
and Orzack 1988)

* Lots of nifty risk metrics can be calculated
using this approximation

« A maximume-likelihood approach for
estimating the 2 parameters from time series
data



e Salmon:
— Leslie matrix model of Snake R. spr/sum chinook
— Has density dependence
— Has environmental autocorrelation

o Petrel:

— Leslie matrix model of the Hawaiian Dark-rumped
Petrel (Simons 1984);

— Long-lived; census is of mature breeders
— environmental autocorrelation
e Sea Turtle:

— Leslie matrix model of the Loggerhead Sea Turtle
(Crowder et al. 1994);

— Long-lived; census is of eggs which is highly variable
— environmental autocorrelation



Probability of 90% decline within time horizon
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Linear gaussian state-space model
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Process error (aka random walk)
var(log(a,,, /a,)) = 7

Non-process error (aka white noise)
var(log(a,, . /a,)) = constant

t+7



Model of measurement error

log(N,,;) =blog(N,) + &,
Iog(yt+1) — Iog(Nt+1) + gt+l,np

&, ~ Normal(u, o)
Stnp f(/B’GaZ)



Monitoring data Is often stage
specific




Example with sea turtles
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Example with salmon
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Probability of 90% decline within time horizon
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Does a state-space model exist
for the age-specific counts?




Spawners
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Linear gaussian state-space model
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Estimation of 62 (process error) + o2

(non-process error) using the state-
space model

* Regression estimating the increase In

variance in log N,, /N, with T (Holmes
2001)

o Kalman filter (Lindley 2003)

 “REML": Restricted ML estimation (Staples
et al. 2004)



Petrel: pretty good...

REML Dennis
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Salmon: struggling...
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Turtle: more struggling...
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Estimating parameters might be
challenging for some species

 \What does real data tell us about the
performance of these methods? Are most
data “petrel-like” or “sea turtle-like”?
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Distribution of process error estimates

500 ¢

REML

| DATA

PETREL SIMS
1 with low non-
Process error




JUCN Red List Criteria

o Criteria A2: “A reduction of at least xx%,
projected or suspected to be met within the next
XX years....”

« Criteria C1: “Population estimated to number
less than xx and an estimated continuing decline
of at least xx% within xx years....”

e Criteria E: “Quantitative analysis showing the
probability of extinction in the wild is at least xx%
within xx years...”



Cross-validation
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Expected vs Observed Freq. of
Hitting Particular Thresholds
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Fraction of time series
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Estimated 75% decline risk vs Predicted accumulated 75%
actual 75% decline declines versus actual
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Estimated 90% decline risk vs
actual 90% decline
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In conclusion....

e This Is research In progress...

* This problem does not appear pervasive in
data on species of conservation concern

 There appears to be a trade-off between
precision of estimates versus bias





