
Kalman filtering for maximum likelihood estimation given corrupted observations.

E. E. Holmes, National Marine Fisheries Service

Introduction

The Kalman filter is used to extend likelihood estimation to cases with hidden states,

such as when observations are corrupted and the true population size is unobserved. The

following algorithm is based on section 3.4 in Harvey (1989), which was used by Lindley (2003)

for estimation for population processes. The Kalman filter is well-known and widely used in

engineering and computer science applications. There are a multitude of books on the Kalman

filter, including Harvey (1989). One of the more penetrable introductions of the Kalman filter

alone (but not on maximum likelihood estimation) is chapter 1 of Maybeck (1979).

The state-space model

The diffusion approximation for a stochastic exponential growth model can be written as

a linear state space model (written in the notation familiar in the engineering literature):

),0(normal~ where, t1 QwwBxx ttt ++=+ [1]

),0(f~ where, t Rvvxy ttt += [2]

where xt = log Nt is the true log population size and yt = log Ot is the log observations of the

population size. B is µ, the mean population growth rate. Q is the σ2, otherwise known as the

process error or environmental variability. R is the variability associated with sampling error or

other non-process error. Only yt, is observed; the underlying parameters, B, Q, and R, and the

underlying true population size, xt, is hidden. If we make the assumption that vt is normally

distributed, then the model is a linear Gaussian state-space model.

We can calculate the probability of the observed time series, },,,{}{ 211 T
T yyyy K≡ , as

follows:

)}{|()}({ 1
1

1
1

−

=
∏= t

T

t
t

T yyPyP [3]

where)}{|(1
1
−t

t yyP is the probability of yt given all the observations before time t and

)()}{|(1
0
11 yPyyP ≡ . Denote the expected value of)}{|(1

1
−t

t yy as 1~ −t
ty . The conditional

probability)}{|(1
1
−t

t yy is distributed normal with a mean 1~ −t
ty and some variance, denoted 1−t

tF ,

which depends on the particular parameters, Ψ = {B, Q, R}, that generated the data. Thus, the

probability of the time series given a particular set of parameters, Ψ, is

∏
=

−−
−

−







 −
−=Ψ

T

t

t
tt

t

t
ttT dF

F
yy

yP
1

2/11
1

21

1)2(
2

)~(
exp)|}({ ϑπ [4]

from the probability density of a normal with mean 1~ −t
ty and variance 1−t

tF . The log likelihood

of ψ given the data, Ty 1}{ , is

∑∑
=

−

−

=

− −
−−−=Ψ

T

t
t

t

t
tt

T

t

t
t

T

F
yy

FTyL
1

1

21

1

1
1

)~(
2
1log

2
12log

2
)}{|(log π + a constant. [5]

For Eqn. 5, we need estimates of 1~ −t
ty =)}{|(1

1
−t

t yyE and 1−t
tF =)}{|(1

1
−t

tt yyyE . Observe from

Eqn. 1 that

RyxxEyyyE

yxEyyE
t

tt
t

tt

t
t

t
t

+=

=
−−

−−

)}{|()}{|(

)}{|()}{|(
1

1
1

1

1
1

1
1 [6]

The Kalman filter below gives optimal estimates of)}{|(1
1
−t

t yxE and)}{|(1
1
−t

tt yxxE which are

then used in Eqn. 5 to calculate the log likelihood of ψ.

The maximum likelihood estimates of B, Q, and R are found by using some type of

maximization routine on Eqn. 6 to find the set of parameters ψ = {B, Q, R} that maximize the

likelihood. Matlab code for this algorithm is given at the end of this appendix.

The Kalman filter

First, some notation:

]}{|[E

]}{|[

},,,{}{

1

1

211

ττ

ττ

τ
τ

yxxV

yxEx

yyyy

ttt

tt

≡

≡

≡ K

The Kalman recursion: Start at t = 1 and step forward to T. Assume an initial 1π≡tx and initial

1
0

1 VV ≡ to start the recursion. One could let these be free variables and find the maximum

likelihood values when maximizing Eqn. 6, but that is not done here and the algorithm should

not be very sensitive to these starting values. At each step, compute:

()
()

11

11

1

1

1
1

11

1
1

11

1for
1for

1for
1for

−−

−−

−

−

−
−

−

−
−

−

−=

−+=

+
=





>+
=

=





>+
=

=

t
tt

t
t

t
t

t
ttt

t
t

t
t

t
t

t
t

t

t
t

t
t

t
t

t
t

VKVV

xyKxx

RV
V

K

tQV
tV

V

tBx
t

x
π

This is the well-known Kalman filter, but it looks a little different than what you’ll see in

engineering texts. First generally it is assumed that yt is a series of measurements from multiple

instruments, thus the Kalman filter is always written in matrix form. Here since yt is one

measurement, it can be written in scalar form. Second, the Kalman filter is usually presented for

the model ,1 tttt wBuAxx ++=+ ttt vCxy += . In this application, A=1, C=1 and ut =1, so the

filter is simplified quite a bit.

References

Harvey, A. C. 1991. Forecasting, structural time series models and the Kalman filter.

Cambridge University Press, Cambridge, UK.

Maybeck, P. S. 1979. Stochastic models, estimation and control. Volume 1. Academic Press,

New York, USA.

Matlab code

function [mu,sigma2,sigma2np]=kalman_ests(data)

y=log(data);

%Start with some reasonable initial parameter estimates
muest=mean(y(2:end)-y(1:(end-1)));
tmp1=var(y(2:end)-y(1:(end-1)));
tmp4=var(y(5:end)-y(1:(end-4)));
sigma2est=(tmp4-tmp1)/3;
sigma2npest=(var(y(2:end)-y(1:(end-1)))-max(0.0001,sigma2est))/2;
pi1=max(0.0001,sigma2est)+max(0.0001,sigma2npest); %var of y(1)

%log transform the variances so the search algorithm doesn’t give negative
% variances
startvals=[muest log(max(0.0001,sigma2est)) log(max(0.0001,sigma2npest))];
%fminsearch is a Nelder-Mead minimization matlab function
a=fminsearch('kalman_loglik',startvals,[],y,y(1),pi1);

MLmuest=a(1);
MLsigma2est=exp(a(2));
MLsigma2npest=exp(a(3));

function negloglik = kalman_loglik(v,y,initx,V1)

T=length(y);
B = v(1); %mu
Q = exp(v(2)); %s2
R = exp(v(3)); %s2np

%initialize
xtt=zeros(1,T); Vtt=zeros(1,T); xtt1=zeros(1,T); Vtt1=zeros(1,T);
xtT=zeros(1,T); VtT=zeros(1,T); J=zeros(1,T); Vtt1T=zeros(1,T);

Ft=zeros(1,T); vt=zeros(1,T);

%forward pass gets you E[x(t) given y(1:t)]
x10=initx;
V10=V1;
for(t=1:T)
 if(t==1)
 xtt1(1) = initx; %denotes x_1^0
 Vtt1(1) = V1; %denotes V_1^0
 else
 xtt1(t) = xtt(t-1) + B; %xtt1 denotes x_t^(t-1); Harvey 3.2.2a
 Vtt1(t) = Vtt(t-1) + Q; %Harvey 3.2.2b
 end
 Kt = Vtt1(t)/(Vtt1(t)+R);
 Ft(t) = Vtt1(t)+R;
 vt(t) = y(t)-xtt1(t);
 xtt(t) = xtt1(t) + Kt*(y(t) - xtt1(t)); %Harvey 3.2.3a
 Vtt(t) = Vtt1(t)-Kt*Vtt1(t); %Harvey 3.3.3b
end

%Calculate negative log likelihood
negloglik = (1/2)*sum(vt.^2./Ft) + (1/2)*sum(log(abs(Ft))) + (T/2)*log(2*pi);

