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Introduction 

The Kalman filter is used to extend likelihood estimation to cases with hidden states, 

such as when observations are corrupted and the true population size is unobserved.  The 

following algorithm is based on section 3.4 in Harvey (1989), which was used by Lindley (2003) 

for estimation for population processes.  The Kalman filter is well-known and widely used in 

engineering and computer science applications.  There are a multitude of books on the Kalman 

filter, including Harvey (1989).  One of the more penetrable introductions of the Kalman filter 

alone (but not on maximum likelihood estimation) is chapter 1 of Maybeck (1979). 

 

The state-space model 

The diffusion approximation for a stochastic exponential growth model can be written as 

a linear state space model (written in the notation familiar in the engineering literature): 
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),0(f~      where, t Rvvxy ttt +=                                               [2] 

where xt = log Nt is the true log population size and yt = log Ot is the log observations of the 

population size.  B is µ, the mean population growth rate.  Q is the σ2, otherwise known as the 

process error or environmental variability.  R is the variability associated with sampling error or 

other non-process error.  Only yt, is observed; the underlying parameters, B, Q, and R, and the 

underlying true population size, xt, is hidden.  If we make the assumption that vt is normally 

distributed, then the model is a linear Gaussian state-space model. 



We can calculate the probability of the observed time series, },,,{}{ 211 T
T yyyy K≡ , as 

follows: 
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where )}{|( 1
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t yyP  is the probability of yt given all the observations before time t and 
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ty  and some variance, denoted 1−t

tF , 

which depends on the particular parameters, Ψ = {B, Q, R}, that generated the data.  Thus, the 

probability of the time series given a particular set of parameters, Ψ, is 
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from the probability density of a normal with mean 1~ −t
ty  and variance 1−t

tF .  The log likelihood 

of ψ given the data, Ty 1}{ , is 
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For Eqn. 5, we need estimates of 1~ −t
ty = )}{|( 1

1
−t

t yyE  and 1−t
tF = )}{|( 1

1
−t

tt yyyE .  Observe from 

Eqn. 1 that 
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The Kalman filter below gives optimal estimates of )}{|( 1
1
−t

t yxE  and )}{|( 1
1
−t

tt yxxE  which are 

then used in Eqn. 5 to calculate the log likelihood of ψ. 



The maximum likelihood estimates of B, Q, and R are found by using some type of 

maximization routine on Eqn. 6 to find the set of parameters ψ = {B, Q, R} that maximize the 

likelihood.  Matlab code for this algorithm is given at the end of this appendix. 

The Kalman filter 

First, some notation: 
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The Kalman recursion:  Start at t = 1 and step forward to T.  Assume an initial 1π≡tx  and initial 

1
0

1 VV ≡  to start the recursion.  One could let these be free variables and find the maximum 

likelihood values when maximizing Eqn. 6, but that is not done here and the algorithm should 

not be very sensitive to these starting values.  At each step, compute: 
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This is the well-known Kalman filter, but it looks a little different than what you’ll see in 

engineering texts.  First generally it is assumed that yt is a series of measurements from multiple 

instruments, thus the Kalman filter is always written in matrix form.  Here since yt is one 

measurement, it can be written in scalar form.  Second, the Kalman filter is usually presented for 



the model ,1 tttt wBuAxx ++=+   ttt vCxy += .  In this application, A=1, C=1 and ut =1, so the 

filter is simplified quite a bit. 
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Matlab code 
 
function [mu,sigma2,sigma2np]=kalman_ests(data) 
 
y=log(data); 
 
%Start with some reasonable initial parameter estimates 
muest=mean(y(2:end)-y(1:(end-1))); 
tmp1=var(y(2:end)-y(1:(end-1))); 
tmp4=var(y(5:end)-y(1:(end-4))); 
sigma2est=(tmp4-tmp1)/3;  
sigma2npest=(var(y(2:end)-y(1:(end-1)))-max(0.0001,sigma2est))/2; 
pi1=max(0.0001,sigma2est)+max(0.0001,sigma2npest); %var of y(1) 
 
%log transform the variances so the search algorithm doesn’t give negative  
% variances 
startvals=[muest log(max(0.0001,sigma2est)) log(max(0.0001,sigma2npest))]; 
%fminsearch is a Nelder-Mead minimization matlab function 
a=fminsearch('kalman_loglik',startvals,[],y,y(1),pi1); 
 
MLmuest=a(1); 
MLsigma2est=exp(a(2)); 
MLsigma2npest=exp(a(3)); 
 
function negloglik = kalman_loglik(v,y,initx,V1) 
 
T=length(y); 
B = v(1); %mu 
Q = exp(v(2)); %s2 
R = exp(v(3)); %s2np 
 
%initialize 
xtt=zeros(1,T);  Vtt=zeros(1,T); xtt1=zeros(1,T); Vtt1=zeros(1,T); 
xtT=zeros(1,T);  VtT=zeros(1,T); J=zeros(1,T); Vtt1T=zeros(1,T); 



Ft=zeros(1,T); vt=zeros(1,T); 
 
%forward pass gets you E[x(t) given y(1:t)] 
x10=initx;   
V10=V1;  
for(t=1:T) 
   if(t==1) 
    xtt1(1) = initx; %denotes x_1^0 
      Vtt1(1) = V1; %denotes V_1^0 
   else 
      xtt1(t) = xtt(t-1) + B; %xtt1 denotes x_t^(t-1); Harvey 3.2.2a 
      Vtt1(t) = Vtt(t-1) + Q; %Harvey 3.2.2b 
   end 
   Kt = Vtt1(t)/(Vtt1(t)+R); 
   Ft(t) = Vtt1(t)+R; 
   vt(t) = y(t)-xtt1(t); 
   xtt(t) = xtt1(t) + Kt*(y(t) - xtt1(t)); %Harvey 3.2.3a 
   Vtt(t) = Vtt1(t)-Kt*Vtt1(t); %Harvey 3.3.3b 
end 
 
%Calculate negative log likelihood 
negloglik = (1/2)*sum(vt.^2./Ft) + (1/2)*sum(log(abs(Ft))) + (T/2)*log(2*pi); 
 


