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Abstract

Forecasting population decline to a certain critical threshold (the quasi-extinction risk)

is one of the central objectives of population viability analysis (PVA), and such

predictions figure prominently in the decisions of major conservation organizations. In

this paper, we argue that accurate forecasting of a population’s quasi-extinction risk

does not necessarily require knowledge of the underlying biological mechanisms.

Because of the stochastic and multiplicative nature of population growth, the ensemble

behaviour of population trajectories converges to common statistical forms across a

wide variety of stochastic population processes. This paper provides a theoretical basis

for this argument. We show that the quasi-extinction surfaces of a variety of complex

stochastic population processes (including age-structured, density-dependent and

spatially structured populations) can be modelled by a simple stochastic approximation:

the stochastic exponential growth process overlaid with Gaussian errors. Using

simulated and real data, we show that this model can be estimated with 20–30 years of

data and can provide relatively unbiased quasi-extinction risk with confidence intervals

considerably smaller than (0,1). This was found to be true even for simulated data

derived from some of the noisiest population processes (density-dependent feedback,

species interactions and strong age-structure cycling). A key advantage of statistical

models is that their parameters and the uncertainty of those parameters can be

estimated from time series data using standard statistical methods. In contrast for most

species of conservation concern, biologically realistic models must often be specified

rather than estimated because of the limited data available for all the various

parameters. Biologically realistic models will always have a prominent place in PVA for

evaluating specific management options which affect a single segment of a population,

a single demographic rate, or different geographic areas. However, for forecasting

quasi-extinction risk, statistical models that are based on the convergent statistical

properties of population processes offer many advantages over biologically realistic

models.
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…a typical random mass phenomenon, unpredictable in certain

details, predictable in certain numerical proportions of the whole. –

George Polya (1968)

I N T R O D U C T I O N

Population models are a standard tool in both ecology and

conservation biology, but these two domains often have

different goals. In ecology, one typically uses population

models to infer the biological mechanisms that produced

some observed data. In conservation science, one con-

structs a population model to forecast future trends or

responses; this latter approach is referred to as population

viability analysis, or PVA (Boyce 1992; Beissinger &

McCullough 2002; Morris & Doak 2003). The key

distinction between these approaches is that one is

focused on causes, while the other is focused on

consequences.
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In both endeavours increasing use has been made of

parameter-rich, mechanistic models, which can range from

simple age-structured models to complex individual-based

models. This approach to PVA forecasting has a number of

pitfalls, most importantly the need for detailed and

abundant data to parameterize the model. Such high-quality

data are rarely available for populations of concern to

conservationists (Morris et al. 2002; DeMaster et al. 2004).

Even when detailed data are available, they typically cover

too short a duration to specify the annual variability of

model parameters. Thus, annual variability must either be

left out of the model or assumed using (hopefully) plausible

parameters. Then there is also the problem of determining

the uncertainty in the model parameters. As many param-

eters are specified rather than estimated from data, we

cannot determine their uncertainty using statistical methods.

At best, we can try to assess the model’s sensitivity to

these parameter values. Because of these limitations, some

policy-makers charged with forecasting populations have

recommended against quantitative PVA – at least for the

typical endangered or threatened species (DeMaster et al.

2004).

In this paper, we argue for a different approach to

forecasting, one based on the convergent statistical prop-

erties of stochastic population processes. As Polya notes in

the opening quote, certain average properties of stochastic

processes may be predictable even when the details of the

underlying process are unpredictable and/or unknown. The

key is to find statistical properties that are convergent over a

broad class of plausible population dynamics. Convergent

statistical properties are at the foundation of classical

statistical inference. However, this type of reasoning is very

different, both philosophically and practically, from infer-

ence based on a biologically realistic mechanistic model

(Fig. 1a). To illustrate the distinction, we will discuss a well-

worn example from statistics: the inference of large sample

means (Fig. 1b).

The first step is to identify the convergent properties of

the statistic of interest, assuming that some convergence

exists. We avoid making a mechanistic model for the data.

Instead, we consider the properties of our statistic: here the

statistic is the sum of n random variables divided by n.

The Central Limit Theorem (CLT) tells us that regardless of

the underlying data distribution, the distribution of large-

sample means is normal. This distribution is a convergent

statistical property of the mean itself – although the process

Figure 1 Reasoning using statistical vs. mechanistic modelling.

(a) In a mechanistic paradigm, the model is meant to mimic the

data observed. The data are thus used to choose the model via

some formal or ad hoc selection method. Once a model is selected

its parameters are estimated, often from the same data. (b) A

familiar example of statistical reasoning is inference concerning a

large sample mean. The Central Limit Theorem (CLT) for

independent random variables says that the means of large

samples converge to the normal distribution. Thus, in this case a

theory concerning the statistical properties of samples is used to

specify the model. Although the large-sample distribution is

known, its parameters l and r2 must be estimated from a small

finite sample. The CLT also specifies the relationship between

small samples and the distribution of large-sample means. (c) The

basic steps of building a statistical model for PVA (1) theory is

used to determine the common stochastic approximating model

that emerge from diverse processes, (2) the theoretical stochastic

model is estimated from the data and (3) a forecast is made using

the estimated model.
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that generated the data is unknown, the distribution of large

sample means is known. Next, we need to address the

problem of estimation – how can we infer the distribution

of the large-sample mean given data from a small sample?

Here, we rely on estimation theory and we need to be

cognizant that our data may well be non-normal, unlike the

large-sample mean. If so, we should use appropriate

methods to adjust for the bias introduced by this non-

normality. In the final step, we use the results from the first

two steps to estimate the distribution and make a forecast

about the large-sample mean.

Our goal is to extend this type of reasoning to the

estimation of a specific property of stochastic population

trajectories: the probability of decline below a pre-defined

threshold. As this metric does not measure absolute

extinction per se, we use the term quasi-extinction (Ginzburg

et al. 1982). Quasi-extinction probabilities are a widely used

risk metric by conservation and management organizations.

For example, the World Conservation Union’s IUCN risk

criteria (Mace & Lande 1991) and the proposed quantitative

criteria for the U.S. Endangered Species Act (DeMaster et al.

2004) rely on quasi-extinction probabilities. For this paper,

we consider only quasi-extinction thresholds above the level

at which demographic stochasticity and Allee effects

become important. These factors accelerate the decline

toward absolute extinction, which differs in many fun-

damental ways from the decline to a critical threshold

(Gilpin & Soulé 1986; Lande et al. 2003; Fagan & Holmes

2006).

The present work synthesizes two bodies of theoretical

research (Fig. 1c): the stochastic convergence properties of

population processes and the estimation of stochastic

models. We begin by identifying a simple stochastic model

– a stochastic exponential overlaid with Gaussian errors –

that approximates the relationships between quasi-extinc-

tion risk, threshold and forecast length. We then show that

the quasi-extinction properties of this three-parameter

model are similar to those of more complex, parameter-

rich processes. After reviewing the theoretical basis for this

approximation, we present two cross-validation studies of

quasi-extinction forecasts. The first is based on simulations

of three cyclic population processes, and the second is based

on an analysis of time series from species of conservation

concern. We conclude by discussing the merits of simple

stochastic approximations in conservation risk analysis, vis-à-

vis the important criticisms that have been raised against

PVA models.

S T O C H A S T I C A P P R O X I M A T I O N S F O R Q U A S I -

E X T I N C T I O N

In this paper, we focus on estimating the expected

probability of quasi-extinction (abbreviated qe):

E[Pr(qe)] ¼
X

f...; x�2; x�1; x0g2X
Pðqe infx1; x2; . . . ; xT gj

f. . . ; x�2; x�1; x0gÞPðf. . . x�2; x�1; x0gÞ ð1Þ

In this equation, {…, x)2, x)1, x0} are the past

(observed) population trajectories and {x1, x2, …, xT} are

future population counts forming a forecast of length

T. P({…, x)2, x)1, x0}) is thus the probability of observing

the �past�, and P(qe|{…, x)2, x)1, x0}) is the probability of

�future� quasi-extinction given that past. To calculate the

expected quasi-extinction probability, we sum over the set X
of all possible past trajectories. E[Pr(qe)] is thus the expected

probability of quasi-extinction observed by selecting a past

trajectory randomly from the past trajectories that particular

process could produce. It measures the propensity of a

population process to produce quasi-extinctions.

Stochastic approximations for density-independent
processes

Most theoretical results regarding density-independent pop-

ulation processes are based on random walks. A simple

random walk starts at some Yt , and at each time step �hops� to

the value Yt+1 ¼ Yt + n, where n is a random variable. Our

starting point for population modelling is the stochastic

exponential growth random walk (Lewontin & Cohen 1969):

log Ntþ1 ¼ log Nt þ lþ gt : ð2Þ
The mean population growth rate is l and the random

variable gt represents year-to-year deviations from that mean.

In this model, the deviations might be drawn from any

smooth distribution with mean zero and finite variance r2.

Autocorrelations in gt are permitted, provided that the

correlation between gt+s and gt goes to zero as s increases.

Throughout this paper, we assume that any such correlation

drops off fairly rapidly. If this were not the case, the

stochastic properties would take a very long time to converge.

Although the distribution of gt in the stochastic expo-

nential is not specified, the behaviour of log Nt+s/Nt

converges for large s: the mean and variance of log Nt+s/Nt

both scale linearly with s and log Nt+s/Nt has a normal

distribution (section 14.3 in Caswell 2000). Thus, for large s
the stochastic exponential model (eqn 2) converges to a

stochastic exponential growth model with Gaussian errors:

log Ntþ1 ¼ log Nt þ lþ et ; ð3Þ
where e is drawn from a normal distribution with mean zero

and variance r2
b; the �b� subscript refers to brown noise

which is the term for noise in which the variance grows

linearly with s. If the errors in eqn 2 are not correlated (i.e.

are i.i.d.) then r2
b ¼ r2, but otherwise generally r2

b > r2.

We will refer to this as the SEG model, which stands for

Stochastic Exponential growth with Gaussian errors.
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The SEG is a good approximation to several important

types of population models. One of the most important of

these is stochastic, age-structured population models with

no density dependence:

N1;tþs

N2;tþs

N3;tþs

..

.

Nk;tþs

2
666664

3
777775
¼ At

N1;t

N2;t

N3;t

..

.

Nk;t

2
666664

3
777775
: ð4Þ

At is the stochastic transition matrix for time t ; in the

context of eqn 4, it is known as the Leslie matrix. The age-

specific fecundities and survival rates in At are random

variables, which might have some year-to-year autocorrela-

tion. As long as the distributions of these vital rates are

reasonably smooth and stationary (meaning that their long-

term means are not changing), any weighted sum Nt ¼P
wiNi,t can be approximated by the SEG model at large s

(Tuljapurkar & Orzack 1980; Tuljapurkar 1989). This will be

true regardless of the specific distributions and temporal

correlations adopted for the fecundity and survival rates

(again, assuming that any autocorrelation goes to zero on

long timescales). The approximation performs best when wi

is the reproductive value of age i– i.e. the left eigenvector of

At (Engen et al. 2007).

Figure 2 shows an example using a Chinook salmon

(Oncorhynchus tshawytscha) population model, following

Holmes (2004). The model is specified by five classes:

individuals aged 1–4 years, and returning spawners. The

stochastic transition matrix is

At ¼

0 0 0 0 ps1me1;t

s2e2;t 0 0 0 0

0 soe3;t 0 0 0

0 0 ð1� b4Þsoe4;t 0 0

0 0 b4soe4;t b5soe5;t 0

2
66664

3
77775
;

ð5Þ
where si is the age-specific survival, bi is the fraction of class

i(¼4 or 5) that enters the spawner class, m is the average

female fecundity, p is the probability of survival during

migration and ei,t represents the year-to-year variability.

Figure 2a shows a collection of simulated 50-year time series

for the total population of this model. In this example, the

total population is taken as Nt ¼
P

wiNi,t, where wi is the

reproductive value of age i (Engen et al. 2007). Each simu-

lation was run for 100 years before we began plotting the

trajectories; this �burning in� is a common numerical method

for starting each simulation at a randomly selected point in

the stationary distribution of population abundances.

The total population exhibits the key properties of a SEG

process. The mean and variance of log Nt+s/Nt scale

linearly with s, and the variance passes through the origin as

expected (Fig. 2c). Figure 2e shows that a two-parameter

SEG model closely approximates the quasi-extinction risk

of the salmon population for various thresholds and

forecast lengths. SEG approximations for many other age-

structured population processes can be found in Tuljapurkar

& Orzack (1980); Lande & Orzack (1988); Holmes (2001);

Morris & Doak (2003); and Holmes (2004).

The SEG also provides a good asymptotic approximation

to stochastic metapopulation models with continuous,

density-independent dynamics (Holmes & Semmens 2004).

In these models, each local population i has its own

stochastic growth function. In addition, each population has

a stochastic dispersal function describing migration to and

from other populations:

Ni;tþ1 ¼ growth� dispersal outþ dispersal in

¼ Ni;t e
zi;t � di;t Ni;t e

zi;t þ
X
j 6¼i

aji;t dj ;t Nj ;t e
zj ;t : ð6Þ

The variable zi,t is the stochastic growth of local

population i in year t, and can be drawn from any smooth

statistical distribution. Some fraction di,t of individuals

emigrates from local population i at year t (similarly dj,t

individuals emigrate from local population j). No constraints

need be placed on the distributions of the growth and

dispersal parameters (z, d and a) or their temporal

correlations. Equation 6 is quite general, allowing for

sources (zi > 0), sinks (zi < 0), dispersal sources and

dispersal targets. The model also allows for anisotropy in

the dispersal, as long as all sites are connected to ensure that

the transition matrix A (eqn 8) is ergodic.

This metapopulation model can be written succinctly as

N1;tþ1

N2;tþ1

N3;tþ1

..

.

Nk;tþ1

2
666664

3
777775
¼ At

N1;t

N2;t

N3;t

..

.

Nk;t

2
666664

3
777775
; ð7Þ

where the matrix At encapsulates both dispersal and local

growth:

At¼

ð1�d1Þez1 a21d2ez2 a31d3ez3 ... ak1dkezk

a12d1ez1 ð1�d2Þez2 a32d3ez3 ... ak2dkezk

a13d1ez1 a23d2ez2 ð1�d3Þez3 ... ak3dkezk

..

. ..
. ..

. . .
. ..

.

a1kd1ez1 a2kd2ez2 a3kd3ez3 ... ð1�dkÞezk

2
666664

3
777775
:

ð8Þ
The t subscripts on the d, a and z parameters have been

dropped to remove clutter; the subscript on the matrix

symbol reminds us that its elements are time-dependent.

A projection of this model forward in time results in a

product of ergodic random matrices (the At values), whose
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convergence properties have been well studied (Furstenberg

& Kesten 1960). The theory in the cited work shows that

the logarithm of the total metapopulation log Mt+s ¼
log
P

Ni,t+s is asymptotically normal, with a variance and

mean that scale linearly with s (Holmes & Semmens 2004):

log Mtþs=Mt !
t!1

normalðsl; sr2
bÞ: ð9Þ

As before, these are the key properties of a SEG model.

Figure 3 shows the quasi-extinction risks for this model in a

simulation with 49 heterogeneous sites connected by

directional dispersal rates (of 5–25% per year). The SEG

model again provides a good approximation (Fig. 3d). Note

that the sites were assigned different propensities to produce

dispersers and different local growth rates.

For density-independent processes, the SEG is the

approximating stochastic model in the sense of Fig. 1c– it

is the process to which these processes asymptotically

converge and provides a reasonable approximation to qe for

multiple types of models. However, we also know from

large databases of real population trajectories that variance

does not generally grow linearly even over time periods of

20–50 years. We address this difficulty by generalizing the

SEG in the next section.

The nature of variability in real population time series

Variance patterns in population time series have been studied

extensively as part of an ongoing debate over the nature of

population regulation. The variance, patterns can be

discussed in terms of the three general classes shown in

Fig. 4 (Pimm & Redfearn 1988; Halley & Kunin 1999;

Inchausti & Halley 2002): (i) brown noise, grows linear in s and

(a) (b)

(c) (d)

(e) (f)

Figure 2 Example of stochastic approxima-

tions of quasi-extinction risk based on the

total population and spawner counts in

Chinook salmon. (a, b) Multiple realizations

of the salmon population model: the log of

the total population (a) and spawners (b).

(c, d) Variance and mean of log Nt+s/Nt,

where Nt is the total population at time t (c)

and log N5,t+s/N5,t, where N5,t is the

spawner count at time t (d). Both measures

are plotted as a function of s. These panels

show the linear scaling of mean and vari-

ance. (e) Actual probabilities of the total

population declining by 20%, 75% and 90%

as a function of forecast length (solid black

lines), and the corresponding predictions

from the SEG approximation (grey lines). (f)

As in (e), but for spawner counts and using

the CSEG approximation instead. Because

the variance has a non-zero intercept (d), a

SEG approximation will not fit the spawner

quasi-extinction surface. Parameter values

for the salmon matrix (eqn 5) are as follows:

P ¼ 0.4815; s1 ¼ 0.018; s2 ¼ 0.044; so ¼
0.8; b3 ¼ 0; b4 ¼ 0.216; b5 ¼ 1; m ¼ 2747;

ei;t � expðNormalð0; r2
i ÞÞ with r2

0 ¼ 0:02,

r2
1 ¼ 0:13, r2

2 ¼ 0:08. The correlation

coefficient between e1 and e2 was r ¼ 0.2,

and the correlation between e0 values for all

age classes was r ¼ 0.8. The latter represents

ocean survival.
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(1/s) var log Nt+s/Nt is constant; (ii) white noise, is constant

with s and (1/s) var log Nt+s/Nt declines geometrically; and

(iii) pink noise, which is intermediate and grows faster at small

s, then slower as s increases. Population time series typically

exhibit a pink noise pattern falling somewhere between the

pure SEG process and white noise, a fact that was first

explicitly documented in the late 1980s (Pimm & Redfearn

1988; Pimm 1991). More recently, this result has been

confirmed and its scope expanded by analyzing the

thousands of long-term time series in the Global Population

Dynamics Database (GPDD) (Inchausti & Halley 2001,

2002). Many different mechanisms can cause the interme-

diate pink noise pattern (see Inchausti & Halley 2002). Here,

we focus on two ubiquitous processes – density-dependence

and age-structure cycles – that cause a pink noise pattern, and

we illustrate a simple stochastic approximation that can

model the quasi-extinction surface for these processes.

This stochastic approximation is a simple extension to the

SEG model, which we refer to as a Corrupted Stochastic

Exponential with Gaussian errors (CSEG):

log Xtþ1 ¼ log Xt þ lþ eb;t ð10aÞ

log Ntþ1 ¼ log Xtþ1 þ ew;tþ1; ð10bÞ
where the eb,t are normally distributed errors with mean 0

and variance r2
b and the ew,t are normally distributed errors

(a) (b)

(c) (d)

Figure 3 Example of a SEG model used to

approximate the quasi-extinction risk in a

stochastic metapopulation model. (a) Multi-

ple simulated trajectories of the log total

metapopulation. (b) Diagram of the meta-

population structure in this example. Each

site disperses a different fraction of its

population each year (the relative dispersal

rates are indicated by the size of the arrows).

Eighty percent of dispersers go to neigh-

bours to the east and south, while the

remaining 20% are distributed equally

among all other sites in the metapopulation.

Sites vary in their intrinsic population

growth rates, but all are declining. Growth

rates range from 0.99 to 0.80. Yearly growth

rates vary (SD ¼ 0.1) and are correlated

between sites (r ¼ 0.9). (c) The variance and

mean of log Mt+s/Mt, where Mt is the total

metapopulation count at time t. (d) Actual

probabilities of declining by 20%, 75% and

90% as a function of forecast length (black

lines) vs. those predicted from the appro-

priate SEG model (grey lines).

Figure 4 The three basic patterns for the (1/s) · variance of log

Nt+s/Nt. Brown noise is the variance pattern typical for density-

independent random walks; variance grows linearly and so (1/s)

var log Nt+s/Nt is constant. In white noise, variance is constant

and thus (1/s) var log Nt+s/Nt falls off geometrically with (1/s). A

white noise pattern is produced by simple error processes, Nt ¼
ew,t,Nt+s ¼ ew,t+s, where the ew,t are drawn independently and

identically from some distribution. Tightly regulated population

processes will also show white noise patterns. Pink noise has an

intermediate pattern. Variance does grow with s (unlike for the

white noise process), but it grows less quickly with large s vs.

small s.
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with mean b and variance r2
w. The CSEG is a density-

independent state-space model. The population counts Nt

are modelled as a SEG (Xt) overlaid with independent

errors. The variance of log Nt+s/Nt still scales linearly with

s, but has a non-zero intercept because of r2
w. This simple

extension of the SEG produces a pink noise pattern. Bio-

logically realistic values of r2
b and r2

w will produce levels of

pink noise similar to those seen in the GPDD (Akçakaya

et al. 2003).

In the following sections, we discuss two common

population dynamics that result in a nonlinear variance

pattern, and illustrate how the CSEG model can approx-

imate their quasi-extinction probabilities. However, we

should also note that the most mundane explanation for

pink noise in the GPDD data is simply the presence of

independent measurement errors (Akçakaya et al. 2003).

The CSEG has also been studied extensively in this

context (Holmes 2001; Holmes & Fagan 2002; Lindley

2003; Holmes 2004; Staples et al. 2004), where it is used as

a method of separating the dynamic population variance

from observation errors.

Stochastic approximations for age- or stage-specific
counts

A stochastic age-structured process does not asymptotically

approach a unique, stable age distribution. Rather, random

perturbations cause the age structure to wander within a

stochastic equilibrium (Cohen 1977). The number of

individuals at age i fluctuates about some mean value, and

those fluctuations are normally distributed (Tuljapurkar &

Orzack 1980; Tuljapurkar 1989). If we consider the total

population weighted by reproductive value, we are essen-

tially averaging over these fluctuations. When we are

interested in the quasi-extinction properties of a particular

age, or if the available data are restricted to a particular age,

these fluctuations introduce additional noise into the linear

random walk and a simple SEG approximation can no

longer be used.

Spawner counts from the Chinook salmon model (eqn 5)

are an example of this problem. The life history of this

species produces strong cycles in the spawner counts

(Fig. 2b). When the variance in log N5,t+s/N5,t is plotted vs.

s (Fig. 2d), we see the same linear trend displayed by the

total population (Fig. 2c) – but with a non-zero intercept

because of the spawner cycles. The distribution of log

N5,t+s/N5,t (not shown) is approximately normal for large s,

as predicted by theory. The statistical properties of the

(logarithmic) spawner counts are thus the same as those of a

CSEG. Figure 2f shows that the CSEG model successfully

describes quasi-extinction probabilities for spawner counts

across different threshold levels and forecast lengths. More

CSEG approximations of age-specific counts in sea turtles,

petrels, and other salmonids can be found in works by

Holmes (2001, 2004).

Stochastic approximations for regulated population
processes

A myriad of both intra- and interspecific forces can lead to

density dependence and ultimately population regulation. In

this section, we will refer to these generically as density-

dependent processes. Stochastic density-dependent pro-

cesses differ in fundamental ways from density-independent

processes. The most basic difference is that in a stochastic

density-dependent process, the population size asymptoti-

cally approaches a stationary distribution whereas in a

density-independent process it does not (Dennis & Costan-

tino 1988; Smitalova & Sujan 1992; Diserud & Engen 2000;

Ives et al. 2003; Dennis et al. 2006). The variance in log

Nt+s/Nt is also nonlinear, exhibiting a pink noise pattern in

which the variance levels off for large s (Akçakaya et al.

2003). The degree of �pinkness� depends on the strength of

the density dependence. If the density dependence is weak,

the variance is approximately linear in s. Indeed, it has often

been noted that weakly density-dependent processes are

difficult to distinguish from a SEG (den Boer & Reddingius

1989; den Boer 1991; Dennis & Taper 1994) and a recent

study illustrated that quasi-extinction for such processes can

be approximated by a SEG (Staples et al. 2005). When

density dependence is strong, on the other hand, the

variance in log Nt+s/Nt levels off quickly with s and

resembles white noise – although it will not necessarily be

Gaussian (Diserud & Engen 2000).

The CSEG can imitate this range of variance patterns by

varying the ratio of r2
b to r2

w, and Akçakaya et al. (2003)

showed that the level of pink noise in the GPDD can be

described parsimoniously by a simple CSEG. To illustrate

the CSEG approximation, consider a stochastic model with

Ricker density dependence (Sabo et al. 2004):

log Ntþ1 ¼ log Nt þ r � jr jNt=K þ et ; ð11Þ
where et is a normally distributed variable with mean zero

and a process error variance of r2
p, r is the intrinsic rate of

increase, K is the carrying capacity and Nt is the total

population size. We examine two specific cases: one with

weak density dependence (r ¼ 0.02), and one with strong

density dependence (r ¼ 0.2). In both examples, K is set to

1000, r2
p is 0.01 and N0 is drawn randomly from the sto-

chastic equilibrium.

Figure 5a and b shows sample realizations of the

simulations with weak and strong density dependence

respectively. Figure 5c shows that the variance in

log Nt+s/Nt slowly plateaus in our weak density dependence

example. In the model with strong density dependence,

however, the variance plateaus quickly (Fig. 5d).
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The variance of the best CSEG approximation is also shown

in these panels. Figure 5e and f compares the quasi-

extinction probabilities of the CSEG approximation with

that observed in the stochastic Ricker simulations. These

panels demonstrate that the CSEG can successfully approx-

imate the real two-dimensional quasi-extinction surface in

both cases. Sabo & Gerber (2007) provide other examples

of CSEG approximations to populations regulated by

predator–prey interactions. In the following section, we discuss

another example: a regulated, multi-species community.

E S T I M A T E D V S . T H E O R E T I C A L S T O C H A S T I C

A P P R O X I M A T I O N S

The previous sections have discussed the convergent

statistical properties of several important classes of popu-

lation processes, illustrating the power of a simple stochastic

model (the CSEG) to approximate quasi-extinction proba-

bilities. This completes the first step of our statistical

inference outline (Fig. 1c): we have selected a single

approximating model that is valid for broad classes of

possible generating processes. Because the CSEG model

was originally developed to address the problem of

measurement errors in census data (Holmes 2001; Holmes

& Fagan 2002; Lindley 2003; Holmes 2004; Staples et al.

2004), this approximation will also cope with noise

introduced by inaccurate population censuses.

While the previous sections focused on the existence of a

theoretical CSEG approximation, this section focuses on

the estimation of this theoretical CSEG from population

count data. This is the second step illustrated in Fig. 1c. We

will use two cross-validation studies, both of which focus on

forecasting 80% population declines. The first study uses

simulated data from three different cyclic population

processes, which were chosen to illustrate strong population

feedback. The noise generated by the feedback tends to

mask the underlying random walk properties. Other studies

have already examined the CSEG approximation for non-

cyclic processes (Holmes 2001; Morris & Doak 2003;

Staples et al. 2004). The goal of our second cross-validation

Figure 5 CSEG approximations to the qua-

si-extinction risk for two stochastic Ricker

simulations, with weak and strong density

dependencies. (a,b) Multiple realizations of

each process. (c,d) The actual variance as a

function of s (black line) and the CSEG

approximation (grey line). (e,f) Actual and

CSEG quasi-extinction probabilities vs.

forecast length for three different thresh-

olds. The CSEG parameters are (left panels)

l ¼ 0, r2
b ¼ 0.005, r2

w ¼ 0.01; (right pan-

els) l ¼ 0, r2
b ¼ 0.0005, r2

w ¼ 0.0158.
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study is to test CSEG forecasts on real time series data for

species of conservation concern.

Parameter estimation for the CSEG

The CSEG is a state-space model with Gaussian errors, and

as such can take advantage of many well-developed

estimation methods. One flexible maximum-likelihood

method commonly used for state-space models is the

Kalman filter (Shumway & Stoffer 1982; Harvey 1989; de

Valpine & Hastings 2002). Lindley (2003) and Holmes

(2004) illustrated its use with the CSEG. The Kalman

algorithm easily deals with missing values, and allows for the

incorporation of supplemental data. The extended Kalman

filter allows for non-Gaussian errors as well (de Valpine &

Hastings 2002; de Valpine 2002).

Other parameter estimation approaches are also available.

For example, the restricted maximum likelihood (REML)

method corrects the finite-sample bias common to ML

parameter estimates (Staples et al. 2004). Standard statistical

packages can be used for REML estimation (Dennis et al.

2006). The �slope method� (Holmes 2001) estimates r2
b

simply by performing a linear regression on the variance

with respect to s . In our experience, the slope method is the

most robust method when the data are generated from a

strongly cyclic process, but this comes at the cost of an

increased bias.

In the following cross-validations, we use the slope

estimation method, because the Kalman filter and REML

methods produced imprecise estimates for our strongly

cyclic data. The Kalman filter was often unable to separate

r2
b and r2

w even with 20–30 years of our simulated data. This

problem was likely caused by autocorrelations in our

simulated data; an extended Kalman filter might be able

to correct this problem.

The principal challenge of CSEG parameterization lies in

the fact that the actual data may differ from the CSEG

model in very substantial ways. The CSEG is an approx-

imation to model the quasi-extinction surface – it is not the

underlying model of the data. Despite the existing work on

estimation of CSEG approximations, cited above, there is

still much research to be done on robust estimation

methods. Research on incorporating age-structure informa-

tion is helping in this regard (Hinrichsen 2002; Engen et al.

2007), but we also need to understand how to include non-

quantitative life-history information, and how to adjust for

autocorrelations generated by population dynamics.

Simulation studies of CSEG forecasts for noisy non-SEG
processes

We used a Monte Carlo approach to study the performance

of CSEGs estimated from various simulations of stochastic

processes. Using a particular stochastic model (the �base

model�), we randomly generated 1000 time series of 10, 20 and

30 years. Each simulation was allowed to run for 100 years (the

�burn-in� period) before any observations {O1,O2,…,Ok} were

recorded. A CSEG was estimated from each series using the

slope method (Holmes 2001, 2004), and used the estimated

CSEG to give an estimate of the probability of an 80%

population decline within the next 50 years. To determine the

actual probability of 80% decline for a given series, we used the

base model to simulate 1000 50-year trajectories forward from

the population state found at the end of the period. In this way,

we obtain a CSEG estimate for the expected probability of

quasi-extinction, which we compare with the actual expected

probability of quasi-extinction.

To calculate the quasi-extinction probabilities, we have to

define the quasi-extinction threshold more explicitly. Spe-

cifically if our threshold is a percent decline, against what

population size should the percent decline be measured?

PVAs often use an average of the last three to five censuses,

to reduce the effect of measurement errors and other noise.

Another common threshold in practice is an absolute

number, for example 250 individuals; in this case, the

problem of defining the baseline is avoided. In this paper we

define percent declines relative to X̂k, the maximum-

likelihood estimate of the final count after the white noise

process has been removed. X̂k is thus a fourth parameter

that had to be estimated from the CSEG in our cross-

validations.

As discussed in the introduction, the focus of this paper is

on estimating the propensity of a given process to experience

quasi-extinction. Thus, we cross-validate our CSEG esti-

mates against the true expected probability of quasi-extinc-

tion:

E[Pr(qe)] ¼
X

fO1;O2;...;Okg2X
PrðfO1;O2; . . . ;OkgÞ

� Prð80% decline in kþ 1 to kþ 51jfO1;O2; . . . ;OkgÞ:
ð12Þ

{O1,O2,…,Ok} denotes a specific simulated parameterization

period, and X signifies the random sample of 1000 such

periods. Pr(80% decline in next 50 years |{O1,O2,…,Ok}) is

the actual probability of 80% decline after a given parame-

terization period, and Pr({O1,O2,…,Ok}) is the probabil-

ity of observing the given parameterization period.

Pr({O1,O2,…,Ok}) is simply 1/1000, as our parameterization

periods are drawn randomly from the stationary distribution.

We simulated three very different cyclic population

models: a stage-structured model, a density-dependent

model with over-compensating dynamics and a model with

four interacting species. For a stage-structured model, we

used the Chinook salmon model (eqn 5) and estimated

CSEGs from the spawner counts only. The parameters of
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the underlying model (given in Fig. 2) produce strongly

fluctuating spawner counts (Fig. 2b). For an over-compen-

sating, density-dependent process we used the stochastic

Ricker model (eqn 11) using parameters (K ¼ N0 ¼ 1000,

r ¼ 0.02, r2
p ¼ 0:04) taken from recently published PVA

analyses of density-dependent processes (McCarthy et al.

2003; Sabo et al. 2004). This model experiences large

density-dependent changes in population size, but is not

tightly regulated (see Fig. 5a). To generate the multi-species

time series, we used a first-order, multivariate, autoregres-

sive (MAR-1) process. In this simulation, the dynamics of

each species are described by a discrete stochastic Gompertz

model (Dennis et al. 2006):

log Ni;tþ1 ¼ g þ b log Ni;t þ ei;t ; ð13Þ
where g is the growth rate, b is the strength of the density

dependence and ei,t is a normally distributed variable with

mean zero and process error variance of r2
i . Multi-species

dynamics are then modelled by extending eqn 13 (Ives et al.

2003):

Xtþ1 ¼ Gþ BXt þ Et : ð14Þ
Here Xt is a vector of the population sizes for each

species at time t, G is a vector of their growth rates, B is the

community matrix describing the strength of self-regulation

(diagonal elements) and interspecies interactions (off-diag-

onals) and Et is a process noise vector. We specified the

MAR-1 process using estimates from a zooplankton

community in Peter Lake, WI, USA (Ives et al. 2003). In

estimating the CSEG and forecasting risk, we only used the

time series for one of the four species (large phytoplankton).

The time series of this process fluctuates tightly about an

equilibrium value (similar to the process shown in Fig. 5b).

Figure 6 shows the estimated probability of decline,

E[Pr(qe)], found using 10-, 20- and 30-year parameterization

periods. The first thing to notice is that 10-year periods are

Figure 6 Cross-validation using simulations of the expected quasi-extinction probability as a function of forecast length (x-axis). The three

rows refer to a Chinook salmon simulation (a-c), a stochastic Ricker model (d-f) and a four-species stochastic community (g-i). The solid

black lines show the actual mean probability of 80% decline observed in the simulations. The boxes and whiskers show the range of CSEG

estimates obtained using 10-year (a,d,g), 20-year (b,e,h) and 30-year (c,f,i) parameterization periods. The boxes enclose 50% of the

CSEG estimates with the line in box showing the median and the whiskers show the range containing 95% of the estimates. The black dots

show the mean CSEG estimate. The CSEG parameters were estimated using the slope method.
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insufficient for estimating the quasi-extinction risk.

Although the estimates themselves are not terribly biased,

their distributions are spread across 0–1 and are often

bimodal. Thus, from now on we refer only to results for

20- or 30-year parameterization periods. It can be seen that

the mean estimated CSEG risks (black dots) track the actual

risks closely (solid black lines), but are not strictly accurate;

each model generates its own flavour of bias. The slope

method, as expected (Holmes & Fagan 2002), produces a

biased estimate of r2
b. Initial tests suggest that this error

could have been approximately halved by estimating the bias

via parametric bootstrapping. Nonetheless, it is striking that

the estimated and actual risks correspond so well given that

all three models produce strongly oscillatory data and have

high non-process variance.

The boxes and whiskers in Fig. 6 enclose 50% and 95%

of the estimates respectively. The line in the middle of each

box represents the median. The inner quartiles (covering

50% of all estimates) are quite small for the MAR and

salmon simulations. In these two populations, the 95%

ranges are also smaller than (0,1) for both short (10–20 year)

and long (30+ year) forecast lengths. In the Ricker model,

the long-term forecasts have very wide and bimodal 95%

ranges while the short-term (10- and 20-year) forecasts have

relatively low variability (Fig. 6e,f). This occurs because the

l parameter of the CSEG (which measures trend) should

have been constrained to zero. Because this process reverts

to the long-term mean population very slowly, the l
estimates took on highly uncertain positive and negative

values.

Estimating and forecasting are known to be difficult for

processes with l ¼ 0 (flat trend) and with slow fluctuations

about the long-term mean. Small errors in the estimated

value of l lead to large errors in the estimated long-term

population size and this leads to bimodal long-term

extinction risk predictions. This problem has been noted

frequently by others and motivates the common recom-

mendation that policy-makers should rely on 10- to 30-year

forecasts rather than 100-year. A recent paper introduced a

discrete Gompertz state-space model to forecast extinction

risks for density-dependent processes (Dennis et al. 2006).

This may be a better approach for slowly reverting

processes, for which the problem of bimodal qe estimates

is especially apt to occur. We should note, however, that this

is not necessarily a problem for the typical species being

considered for an endangered, threatened or similar

designation: such species are often declining.

Studies on CSEG forecasts for real-time series

Simulations are useful for studying population dynamics, but

the models chosen are simplified and not necessarily

representative of typical populations. In our second cross-

validation study, we assembled a database of 63 time series

at least 30 years long from species monitored for conser-

vation or management reasons. These data were obtained

from a literature search and through direct contact with

governmental agencies across the world (Table S1). The

majority are high-risk populations officially listed by one or

more conservation agencies at the endangered or threatened

level.

Our methods are similar to those of other cross-

validations using real data (Brook et al. 2000; Holmes &

Fagan 2002; Holmes et al. 2005), except that we examine the

precision of our estimates as well as the bias. Each time

series was divided into a 20-year parameterization period

followed by a 10-, 20-, or 28-year forecast period. Very long

time series were also segmented to increase the sample size;

in this case the parameterization periods were allowed to

overlap by 10 years. No more than five parameterization

periods were taken from any one time series, so as not to

over-represent any species or population. For each time

series, a CSEG was estimated from the parameterization

period using the slope method. The CSEG was then used to

predict whether the quasi-extinction threshold would be

reached during the forecast period. We validated the CSEG

estimates in two different ways. First, the actual number of

quasi-extinctions in the entire database was compared with

the expected number derived from CSEG estimates at

various thresholds and horizon lengths. This analysis

assesses the systematic bias in the method and is analogous

to the validation of E[Pr(qe)] estimates shown in Fig. 6. The

goal of this analysis is to quantify whether we can properly

estimate the risk on average. Unlike the simulations, we

cannot assess the variability of the risk estimates directly.

Instead, we use parametric bootstrapping (Dennis & Otten

2000; Engen et al. 2001) to estimate their precision. In this

method, the estimated model is used to generate new data

from which the parameters can be estimated again, and so

on. This process creates a series of parameter estimates,

which can be used to evaluate variability.

We calculated two measures of uncertainty. The first is the

probability of 20%, 50%, or 80% decline within a 10-year

forecast period, with 95% and 50% confidence intervals. These

confidence intervals are notoriously difficult for decision

makers to use – being essentially an uncertainty on an

uncertainty. Population prediction intervals (PPI) have been

proposed as an alternative (Engen et al. 2001; Sæther & Engen

2002). The PPI is the time interval that will include a decline to

some quasi-extinction threshold 95% or 50% of the time. The

PPI interval incorporates the uncertainty because of stochas-

ticity as well as the uncertainty in the estimated parameters.

Figure 7 shows the estimated and actual proportion of

quasi-extinctions over the entire database for 10-, 20- and

28-year forecasts following a 20-year parameterization

period. The observed (line) and predicted (points) frequen-
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cies match very closely. These plots show that the CSEG

estimates of E[Pr(qe)] are generally unbiased. Figure 8

shows the estimated precision of the estimates – via

parametric bootstrapping. The left-hand column of Fig. 8

shows the estimated 95% (grey) and 50% (black) CIs of the

CSEG-estimated quasi-extinction probabilities (80%, 50%

and 20% declines, all over a 10-year projection period). The

50% CIs are quite narrow, and the 95% CIs are less than

(0,1). Precision, as might be expected, is best when the

estimated risk is high (> 75%) or low (< 25%). Precision is

worst (wide CIs) when the estimated qe is near 50%.

However, the PPIs in Fig. 8 indicate that the certainty of the

risk estimation is often better than the CIs might suggest.

The PPIs also highlight the fact that in most cases, a low

estimated probability of quasi-extinction within 10 years

corresponds to a long expected quasi-extinction time

(< 50% of time series experience qe before 100 years) and

conversely when the estimated qe risk is > 50%, half of time

series will have experienced qe well before 50 years. The

dataset used in this analysis is focused on populations of

conservation concern. Such populations are atypical in that

they tend to be at historically low levels or declining;

however, PVA is generally done for precisely these types of

populations.

D I S C U S S I O N

In this paper, we have drawn a distinction between (i)

statistical models, which seek to capture the ensemble

properties of stochastic processes, and (ii) mechanistic

models, which seek to portray the underlying biological

processes. We have shown how simple stochastic approxi-

mations can model a particular ensemble property, the risk

of quasi-extinction. We have focused on the corrupted

stochastic exponential Gaussian model (CSEG), and shown

how the CSEG can accurately approximate quasi-extinction

risks across different forecast lengths and risk thresholds,

for a variety of population processes. Using simulations and

20 years of data, we illustrated that CSEG estimates of

quasi-extinction risk can have relatively low bias and 95%

CIs that are much smaller than (0,1) – particularly for

declining and rapidly fluctuating populations. We cross-

validated these results using a large dataset of abundance

time series from species of conservation concern. We found

that estimates had low bias across 10- to 30-year forecasts

and that the 95% CIs were much less than (0,1) when

forecasting severe declines (50% and 80%). Wide CIs were

mainly a problem when estimating the risk of small declines

(20%) and when the estimated probability of quasi-

extinction was intermediate (near 0.5).

The point of this paper, however, is not that the CSEG

is a panacea for all quasi-extinction estimation. Although

we found that an adequate CSEG could be estimated for

declining or tightly fluctuating populations, estimation was

problematic for populations fluctuating slowly about an

equilibrium. There is ongoing theoretical work on sto-

chastic population processes, and there remains much to

learn – especially about the statistical properties of density-

dependent processes. Rather, the main point of this paper

is to illustrate and advocate the use of statistical models

based on the convergent properties of stochastic popula-

tion trajectories. The main strengths of this approach are

threefold. First, if a convergent approximation exists for

several broad classes of dynamics, one needn’t specify the

Figure 7 Cross-validation of bias using real-time series data. The

panels show the expected fraction of quasi-extinction within the

dataset vs. the actual fraction for (a)10-, (b)20- and (c)28-year

forecasts. A 28-year forecast was used instead of 30-year since we

had few time series that were 50 years or longer, but a number of

48-year time series. The sample size (number of time series) is

different in each panel because there are fewer long time series in

the dataset. The 95% CI error bars on the CSEG estimates were

calculated via parametric bootstrapping. A 20-year parameteriza-

tion period and the slope method were used for all time series.
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underlying mechanistic process to accurately forecast

quasi-extinction. Second, a parameter-sparse statistical

model requires much less data for estimation than a

typical parameter-rich mechanistic model, and is thus less

likely to be compromised by over-fitting. Finally, the

parameters of a statistical model are estimated and their

uncertainty can be quantified using standard statistical

techniques. Our inability to rigorously quantify the

uncertainty of predictions based on parameter-rich, mech-

anistic models is a serious problem and one too rarely

acknowledged.

Confronting the criticisms of simple PVA models

PVA models that leave out biological detail have often

been criticized (Taylor 1995; Ludwig 1996; Beissinger &

Westphal 1998; Ludwig 1999; Fieberg & Ellner 2000;

Coulson et al. 2001; Ellner et al. 2002). The critics contend

that because simple PVA models ignore or incorrectly

model important processes in the population dynamics,

they must yield biased and/or imprecise forecasts of risk.

They also assert that PVA predictions are unreliable

because the data used to estimate model parameters are

marred by observer errors and because sparse datasets lead

to highly uncertain parameter estimates with extremely wide

confidence intervals on the estimated risk. Here, we revisit

these criticisms in light of our results regarding statistical

PVA models.

First, in fairness to previous critiques of PVA, we note

that the data used by conservation biologists are indeed

riddled with observation errors. These errors can corrupt

and bias estimates of the true yearly variation and,

consequently, quasi-extinction risk. Much recent research

has been focused on the use of state-space models to deal

(a) (b)

(c) (d)

(f)(e)

Figure 8 Two measures of quasi-extinction uncertainty: confidence intervals and population prediction intervals. The left-hand panels show

the 95% and 50% confidence intervals on the estimated probabilities for 80%, 50% and 20% declines (panels a, c and e respectively).

Confidence intervals were calculated using parametric bootstrapping as follows: the estimated CSEG was used to generate 1000 random 20-

year parameterization periods. From each, a CSEG was estimated to give 1000 bootstrapped estimated CSEGs. The bootstrapped CSEGs

were then used to generate quasi-extinction forecasts. The CIs show the variability of the bootstrapped quasi-extinction risks. The right-hand

panels show the population prediction intervals (PPI) which is the 0 to T interval that includes 50% (black) or 95% (grey) of all quasi-

extinctions. The y-axis maximum is 100+ years, so all PPIs with T > 100 years span the entire y-axis. Panels b, d, and f show PPIs for 80 %,

50 %, and 20 % declines, respectively. The population prediction intervals were determined with parametric bootstrapping, following Engen

et al. (2001).
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with observation errors. CSEG models provide an explicit

way of addressing this problem, and greatly reduce the

effects of these errors on the quasi-extinction risk forecast

(Holmes 2001; Holmes & Fagan 2002; Lindley 2003;

Holmes 2004; Staples et al. 2004; Dennis et al. 2006). This

research shows that the bias due to observation error can be

quantified and its effects mitigated using a state-space model

like the CSEG.

A second common criticism of simple PVA models is

that biological detail is necessary for accurately modelling

population dynamics. Examples abound of problems that

can arise when a PVA model lacks age or stage structure

(Fieberg & Ellner 2000; Ellner et al. 2002; Wilcox &

Possingham 2002), individual variations (Fox & Kendall

2002), demographic stochasticity (Lande 1993; Engen et al.

2003, 2005), density dependence (Foley 1994; Sabo et al.

2004), or species interactions (Gerber et al. 2005; Sabo &

Gerber 2007). The argument that we present in this paper is

that complex details often average out when we look at

ensemble properties, that these ensemble properties can

have similar patterns across different types of population

dynamics, and that simple approximations exist for one of

these properties – quasi-extinction probabilities. The chal-

lenge is properly estimating the approximations, and many

of the examples of problems occur when one simply treats

the data as if they came from a SEG when they in fact show

substantial differences from SEG data. Estimation is most

difficult for populations fluctuating slowly about a long-term

mean; however, endangered and threatened species often do

not fall into that category. That details tend to average out is

particularly important for PVA because we often are highly

uncertain concerning even basic biological details for our

population (e.g. the strength of density-dependence or age-

specific vital rates). Developing models and metrics that

have good convergent statistical properties ameliorates this

problem. By contrast, building complex models we cannot

parameterize exacerbates this problem.

Finally, there is what is known as the (0,1) criticism,

which asserts that sparse data and strong environmental

variations lead to quasi-extinction risk estimates whose

confidence intervals either span the entire range of

probabilities or are bimodal on 0 and 1 (Ludwig 1996;

Fieberg & Ellner 2000; Ellner et al. 2002). Along similar

lines, some researchers have found that risk estimates using

simple PVA models are reasonably precise only for forecasts

that are much shorter (e.g. 20%) than the number of years

available for parameterization (Fieberg & Ellner 2000). We

agree with these criticisms when too little data (i.e. only

10 years) are available. As we have seen in this study and

other cross-validations (Holmes 2004), a 10-year time series

is too short for estimating quasi-extinction risk. Our

conclusions differ, however, when a 20-year time series is

available. Using simulations, we found that in this case

unimodal and relatively unbiased risk estimates could be

made for up to two and a half times the length of the

parameterization period in our declining and rapidly

fluctuating populations. Only the slowly fluctuating popu-

lations were limited to shorter forecasts. This agrees with

our previous simulation studies (Holmes 2001, 2004; Sabo

et al. 2004; Sabo & Gerber 2007) and is supported by cross-

validations using time series from species of conservation

concern (this study; Holmes & Fagan 2002; Holmes et al.

2005).

One reason that our simulation results are more

optimistic is that we use a much smaller value of r2
b in

the CSEG. Recall that r2
b represents how variance increases

in a time series; it is a stochastic average over all the

variations buffeting a population. Based on CSEG estimates

taken from hundreds of vertebrate time series where we

separated r2
b and r2

w, we consider the range 0.01–0.05 to be

realistic. In contrast, studies exhibiting extreme (0,1)

problems typically use models with such high process error

variance that they produce r2
b values in the range of 0.1–0.5.

Such values produce time series that resemble insect

trajectories more than vertebrate trajectories. It could be

argued that our optimist outlook represents a taxonomic

bias, however, this bias is also present in the monitoring of

species of conservation concern.

When and where can statistical models for extinction be
useful?

CSEGs can be used to estimate quasi-extinction probabilities,

which are in turn useful for establishing the status of

threatened and endangered species. Quasi-extinction proba-

bilities are also useful in �conservation triage� – ranking the

risks faced by various species to prioritize attention and aid

(McCarthy et al. 2003). However, simple statistical models

(like the CSEG) will not be useful for all types of analyses

performed in a PVA. Ignoring the mechanisms responsible

for dynamics means that we cannot find mechanistic solutions

to population decline. For example, only stage- or age-

structured models can aid practitioners in identifying the life

stages or vital rates most critical to a declining population.

Many previous studies have applied PVA in this way (Crouse

et al. 1987; Doak et al. 1994; Heppell et al. 1996; Caswell 2000;

Wisdom et al. 2000). In general, statistical models of quasi-

extinction risk will not prove useful for answering such �What

should we do and how should we do it?� questions.

Although we have argued in this paper that with 20 years

of data the (0,1) problem is neither insurmountable nor

ubiquitous, quasi-extinction estimates are estimates and they

definitely have uncertainty and sometimes high uncertainty.

This paper has been focused on accurately specifying that

uncertainty. To then make decisions based on these

estimates, it is critical that they be used in a decision-
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making framework that allows one to account for the

uncertainty surrounding the estimates and that does not rely

on point estimates. This is an active research area and there

are a diversity of options, both frequentist and Bayesian, for

approaching this problem (Ludwig 1996; Wade 2000; Sæther

& Engen 2002; Taylor et al. 2002; Staples et al. 2005;

Nicholson & Possingham 2007). In addition, research is

ongoing into formal decision theory frameworks for PVA

that allow policy-makers to weigh the uncertainty concern-

ing the true risk level against the costs of those different

levels being true (Goodman 2002; Dorazio & Johnson 2003;

Drechsler & Burgman 2004).

C O N C L U S I O N

We do not dispute the importance of mechanistic models,

which provide testable hypotheses about underlying mech-

anisms and can be used to simulate the effects of specific

management actions. When the only goal is forecasting

quasi-extinction, however, we argue for a statistical model

with few free parameters. Appropriate statistical models can

be derived from the theory of stochastic population

processes and can be easily estimated from the most

common type of data for species of concern – time series of

population counts. It is true that in some cases the risk

estimates will have high variance, but we argue that

statistical models both reduce this variance and allow us

to quantify the uncertainty in more a traditional manner. In

contrast, for all but the most well-studied species, any

mechanistic population model will be replete with poorly

estimated parameters. In such cases, meaningful uncertainty

estimates are impossible. Critics of PVA tend to argue that

the devil is in the details. We counter that the urge to

account for intricate biological details ignores the fact that

these details average out thanks to the stochastic and

multiplicative nature of population growth. If we focus

only on the details, we lose sight of the common patterns

that govern the ensemble behaviour of population

trajectories.
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