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Colonization-competition trade-offs have long been her-
alded as a mechanism for promoting the competitive co-
existence of species in patchy environments (Hutchinson
1951; Skellam 1951; Horn and MacArthur 1971; Levins
and Culver 1971). In short, this mechanism argues that
species that are inferior competitors in local patches can
coexist with superior species by having a higher dispersal
rate. Empirical evidence for colonization-competition
trade-offs comes from fungi communities (Armstrong
1976), species of Daphnia (Hanski and Ranta 1983),
chalk grasslands of England and Europe (Grubb 1986),
fly communities (Hanski 1990), and grasslands of Min-
nesota (Tilman 1994). These trade-offs also have well-
established theoretical foundations from over 25 yr of
work on competitive coexistence using patch models
(e.g., Levins 1970; Levins and Culver 1971; Hastings
1980; Nee and May 1992; Hanski and Zhang 1993; Til-
man 1994; Tilman et al. 1994; Comins and Hassell 1996).

When biologically interpreting the colonization-
competition trade-off in these patch models, it is natural
to infer that it is a theoretical prediction about dispersal
distances and competitive coexistence. Certainly many of
the models were developed with the idea of an inferior
competitor that disperses its offspring widely outside a
local patch versus a superior competitor that disperses its
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offspring mostly locally. However, the patch models that
are normally used to study the colonization-competition
trade-off (such as those in Levins and Culver 1971; Has-
tings 1980; Tilman 1994) are not explicitly spatial, mean-
ing the environment is broken into patches but the
patches do not have an explicit spatial location. Thus,
dispersal distance has only an implicit meaning in the
sense of within- versus between-patch dispersal. These
models explore the effect of the numbers of colonists that
are sent outside their local patch, not the explicit dis-
persal distance. In this case, the strict interpretation of
the colonization-competition trade-off is that to survive
the inferior competitor must send out viable colonists at
a sufficiently higher rate than the superior competitor.
What then is the importance of dispersal distance per
se in competitive interactions between two species? A
number of spatially explicit models have been developed
that model competition between species that disperse
their offspring different distances (Weiner and Conte
1981; Pacala 1986; Crawley and May 1987; Hobbs and
Hobbs 1987; Czaran and Bartha 1989). Although only
one of these studies (Pacala 1986) was designed to di-
rectly study the effect of dispersal distance, all suggest
that the dispersal distance has an effect on the ability of
an inferior competitor to coexist. Using detailed models
of plant population dynamics, Pacala (1986) showed that
localized dispersal caused an aggregated spatial distribu-
tion and a decreased equilibrium density. These changes
in turn enhanced the ability of an equal or inferior com-
petitor to invade. When two species were equal competi-
tors, the species with a longer dispersal distance could in-
vade a monoculture of the species with the shorter
dispersal distance but not vice versa. These latter results
came from a simulation study for one set of life-history
parameters and only looked at invasion success, but they
suggest strongly that differential dispersal distances affect
the ability of species to coexist. Crawley and May (1987)
looked directly at coexistence conditions using a spatially
explicit patch model of competition between an annual
and a perennial in which the perennial was a superior
competitor for space but the annual was both a more
prolific and longer distance colonizer. As in Pacala’s
study, localized dispersal by the superior species caused it



to clump and lowered its equilibrium density. This in
turn enhanced the coexistence of the inferior species.
Czaran and Bartha (1989) developed a model for the dy-
namics of 11 weedy plant species and compared simula-
tions assuming localized versus global dispersal. They
found that the inclusion of localized dispersal greatly
changed the transient densities. A qualitatively similar re-
sult was seen by Dytham (1994) in a study of the effect
of habitat destruction on the densities of two locally dis-
persing competitors. Dytham showed that local dispersal
significantly changed the densities and persistence thresh-
olds of the two species.

A consistent observation in these studies is that local-
ized dispersal causes a clumped spatial distribution and a
lower overall density and that these effects can in turn
benefit a competing species. However, each of the models
is very different and many of the results are based on
simulations with which only limited parameter space ex-
ploration is possible. It is not clear whether a large differ-
ence between the dispersal distances of two competitors
fundamentally changes coexistence criteria as opposed to
simply lengthening the time to reach equilibrium, quan-
titatively but not qualitatively changing coexistence crite-
ria, or causing changes only on account of interactions
with other attributes of the model such as gap or patch
size. In order to further a basic understanding of the im-
portance of dispersal distance, we return to the simplified
patch occupancy models that have often been used to
study the colonization-competition trade-off. However,
we add explicit spatial location and explicit distances be-
tween patches. Specifically, we use cellular automaton
analogues of patch occupancy models. Similar cellular
automaton models have been used recently to explore the
spatial population dynamics of competing plant species
and other sedentary species (Karlson and Jackson 1981;
Crawley and May 1987; Inghe 1989; Rees and Long 1992;
Silvertown et al. 1992; Colasanti and Grime 1993; Halley
et al. 1994; Molofsky 1994).

We study two models of two-species hierarchical com-
petition. When the competitors disperse their offspring
equal distances, both models require a trade-off between
colonization and competitive ability in order for the two
species to coexist. We specifically address whether this
colonization-competition trade-off is required when the
inferior competitor disperses its offspring over a much
wider area than the superior competitor. The coloniza-
tion-competition trade-off is a fundamental aspect of
many simple patch models of competition. Whether
wider dispersal by the inferior competitor can overcome
this requirement is in essence a litmus test of the power
of long-distance dispersal. We study the criteria for coex-
istence at equilibrium and do not explore whether the
steady states are static, cyclic, or chaotic. Throughout, we
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explore the benefit of long-distance dispersal only. Some
studies have shown that localized dispersal can enhance
coexistence by segregating competitors (Pacala 1986).
However, this is not explored for the simple reason that
for the types of cellular automaton models used here, lo-
calized dispersal either does not change the equilibrium
state or uniformly makes equilibrium coexistence more
difficult (Durrett 1991; Durrett and Moller 1991; Durrett
and Swindle 1991).

Hierarchical Competition

We first consider competition in which one species is a
superior competitor for space and can both exclude the
inferior competitor from a site and remove it by coloniz-
ing on top of it. When both species disperse globally, we
have the following patch occupancy model (Levins and
Culver 1971; Hastings 1980; Nee and May 1992) for the
fraction of sites occupied by the superior, S, and inferior
competitor, I:

as _ ¢S(1 —8) — 38§
dt
and (1)
@zcil(l - S—1I) — 8l — ¢8I,
dt

where ¢, and ¢; are the colonization rates of each species
(superior and inferior, respectively), and § is the local ex-
tinction rate. We assume for clarity of presentation that
the extinction rates of the superior and inferior species
are equal. The coexistence criterion for equation (1) is

(Hastings 1980):
Cs
G >cl< |

Since the superior’s colonization rate must be greater
than its death rate to persist, ¢; must be greater than c.
This is the colonization-competition trade-off (fig. 14).

To study the advantage conferred by long-distance dis-
persal, we consider a cellular automaton analogue of the
patch occupancy model (see Mollison and Kuulasmaa
1985 or Durrett and Levin 1994 for an introduction to
ecologically oriented cellular automaton models). The
habitat is considered to be an infinite square grid of sites.
Each site can contain only one individual and has a set of
four immediate neighbors. The superior competitor can
colonize only locally onto its immediately neighboring
four sites while the inferior competitor disperses its off-
spring over the entire grid. Thus, in this model, the infe-
rior species has an infinitely longer dispersal distance
than the superior species.

(2)
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Figure 1: Hierarchical competition with exclusion and mortality. A, Patch occupancy model. In this model, both species disperse
equally and globally. The inferior competitor must have a colonization advantage to coexist with the superior competitor. This is
the colonization-competition trade-off. B, Cellular automaton model. In this model, the inferior competitor colonizes globally and
the superior competitor colonizes locally. When the colonization rate of the superior species is small (and the observed fraction
of occupied sites is correspondingly small), a dispersal-competition trade-off exists. In this region, long-distance dispersal of off-
spring allows an inferior competitor with a small colonization disadvantage to coexist with the superior species.

The model can be described explicitly as below. At
each, very small, time step, sites make transitions ac-
cording to the following probabilities. (1) With probabil-
ity cdt, the superior competitor sends out a colonist to a
randomly chosen neighboring site. If the site is empty or
occupied by the inferior competitor, the colonist estab-
lishes. (2) With probability ¢;dt, the inferior competitor
sends out a colonist. The colonist has an equal probabil-
ity of landing on any site in the grid. If it lands on an
empty site, it establishes; otherwise it dies. (3) The infe-
rior and superior competitors die with probability ddt.

Using a mean field argument described in the appen-
dix, we show that the coexistence criterion for the infe-
rior competitor is:

85t 8
(1-89 1-8*

(3)

Ci>

where §* is the equilibrium fraction of sites occupied by
superior competitor in the cellular automaton model.
There is no equation for S* in terms of ¢,. However, in-
formation about the relationship between S* and ¢, can
be used to determine the qualitative shape of the coexis-
tence criterion.

When the superior competitor is rare (S* = 0), it will
persist only if its colonization rate, c,, is greater than its

death rate, 3, by some margin (Durrett 1991; Mollison
and Levin 1995). This margin compensates for intraspe-
cific competition due to local colonization. From simula-
tions, the minimum colonization rate is approximately
¢, = 1.650 when colonists disperse to the nearest four
neighbors only (Durrett 1991; Mollison and Lewis 1995).
At the same time, when the superior competitor is rare,
the minimum colonization rate for the inferior competi-
tor is simply ¢; = d. Thus, when the superior competitor
is rare, the inferior competitor can have a lower coloni-
zation rate than the superior competitor yet still persist
(fig. 1B). In this case, the inferior competitor can coexist
by virtue of its long-distance dispersal.

When the superior competitor is common, we can
use a simple argument to show that ¢; must be greater
than ¢, When the superior competitor occupies most
of the space, any inferior site will be surrounded by ap-
proximately four superior neighbors. The rate that the
superior competitor colonizes onto inferior sites is then
approximately 4¢,I. The coexistence criterion for the in-
ferior species is ¢;(1 — S*) > 4¢, + 0. Since 0 = S* = 1,
¢; must be greater than ¢ (fig. 1B). In general, ¢; must be
greater than ¢, when the average number of superior
neighbors per inferior site is > 1. Thus, a colonization-
competition trade-off is required when the superior com-
petitor is common.



The results from the cellular automaton model are re-
lated to results from studies on aggregation and coexis-
tence. In the cellular automaton model, the offspring of
the superior species are dispersed near the parent. When
the superior competitor is rare, this type of local coloni-
zation produces an aggregated colonization distribution.
That is, the vast majority of patches receive no colonists,
and a few patches (i.e., the neighboring patches) receive
many colonists. When the superior species is common,
however, most patches receive a similar number of colo-
nists so that there is little aggregation. Aggregation as a
mechanism for coexistence has been studied by a num-
ber of authors (e.g., Atkinson and Shorrocks 1981; Ives
and May 1985; Green 1986; Shorrocks 1990; Dytham and
Shorrocks 1992, 1995). The results of these models indi-
cate that when intraspecific aggregation is greater than
interspecific aggregation, coexistence of superior and in-
ferior competitors is facilitated (Ives 1988; McPeek and
Holt 1992).

Hierarchical Competition for Space Alone

In the previous model, the superior competitor causes
mortality of the inferior competitor. We now analyze the
case when the two species compete only for space. Here,
the inferior species is an annual and is not killed by the
superior perennial species; it simply cannot colonize sites
occupied by the superior species. An example of this type
of model is Crawley and May’s (1987) spatial model of
a competitively inferior annual plant, which spreads its
seeds widely, versus a competitively superior perennial
plant, which spreads ramets only locally.

We first consider the case when both species disperse
globally and randomly. This is represented by a patch oc-
cupancy model:

St+1 = [1 - (1 - Ss)st](l - EXP(_CsSr))
+ (]- - 6s)Su
(4)
and
Ir+1 = (1 - Sr+1)(1 - eXP(_CiL))'

The 1 — exp(—x) term is the fraction of sites that receive
at least one colonist. The model is written with discrete
time that allows competition to occur only during the
colonization phase. The condition for coexistence for
model (4) is:

L (5)
1—3S

Ci>

It can be shown that the colonization-competition trade-
off is necessary for coexistence by observing from equa-
tion (4) that $ > 1 — d,/c,. This means that at the point
when coexistence is just possible (when ¢; = 1/[1 — §]),
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the production of colonists by the inferior competitor
must be greater than that of the superior competitor (fig.
2A). The death rates of the two species are different, thus
the colonization-competition trade-off is stated in terms
of the lifetime production of colonists, ¢;/d; and c,/d;,
where 8, = 1.

To look at the effect of long-distance dispersal, we
consider a cellular automaton analogue of this model, in
which the inferior competitor disperses globally and the
superior competitor disperses locally (see also Durrett
and Levin 1994). Durrett and Schinazi (1993) have
shown that the coexistence criterion is

1

¢ > R
1 — §*

(6)

where S* is the equilibrium fraction of sites occupied by
the superior species in the cellular automaton model.
This result is the same as that derived by Crawley and
May (1987) via a different analysis.

Because there is not an equation for S%, it is not possi-
ble to write down an equation for the coexistence crite-
rion as a function of ¢; and ¢,. However, we can qual-
itatively characterize the coexistence criterion (fig. 2B).
As discussed for the previous cellular automaton model,
¢; must be greater than d; by some margin to compen-
sate for intraspecific competition due to local dispersal,
¢/ = c;/6 = 1 + m. When ¢, is close to c.;, the su-
perior species is rare and S* =~ 0. At this point, the cri-
terion for coexistence of the inferior competitor is ¢; >
1. An inferior competitor with ¢;, such that 1 < ¢ <
1 + m has a colonization rate that is lower than that of
the superior species, but it still can coexist. Thus, a
higher lifetime colonization rate, ¢/39, is not strictly neces-
sary when the superior species is rare.

When the superior competitor is abundant, we note
that as the colonization rate of the superior species in-
creases, the fraction of space that it occupies ap-
proaches 1. We observe from simulations that

empty space in global model

empty space in cellular automaton model

1-35
= S,
1 — S*

as ¢,/d, — oo.

From equation (4), S~1-— &, exp(—c,) when S is very
close to 1. If we substitute 1 — J; exp(—c¢,) into equation
(6), then we see that ¢;/S; must be greater than ¢./S; (fig.
2B). When the superior competitor is common, the infe-
rior competitor must have a higher colonization rate.

Time to Extinction and Noninstantaneous Exclusion

In our discussion of coexistence conditions, we focused
on the equilibrium condition for coexistence. However,
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Figure 2: Hierarchical competition model with exclusion only. In this model, the superior species does not cause direct mortality
of the annual but merely preempts colonization sites. A, The patch-occupancy model where both species disperse globally. B, The
cellular automaton model in which the superior competitor disperses locally. The coexistence regions are similar to those for the

cellular automaton model in figure 1B.

one can well imagine conditions under which this equi-
librium is approached so slowly that the two species co-
exist for indefinite ecological time even though the infe-
rior competitor is doomed to extinction. Here, we give a
qualitative feel for how quickly an inferior species will be
excluded for the first hierarchical competition model
(eq. [1)).

If the superior competitor invades a monoculture of
the inferior competitor, the superior species spreads out-
ward at a constant velocity (Cox and Durrett 1988) and
eliminates the inferior species in its wake. From simula-
tions, the velocity is approximately 0.83¢, V2 when § = 0
(the superior competitor is immortal) and decreases
steadily to 0 as O increases (Mollison and Kuulasmaa
1985; Mollison 1991). Obviously, the time until the infe-
rior species is eliminated will depend on the size of the
habitat over which the superior species must spread. The
inferior species will persist for some period in the wake
of the superior species. Via a mass-action argument (see
the appendix), the rate of change of the inferior species
can be approximated by the function

ar_ ——i—S*I = J3S* T+ ¢I(1 — I —8%. (7)
dt 1= §*
The upper bound on the time for I to halve is In(2)/
[0 + S*8/(1 — $*) + S* — ¢]. If the inferior species

is almost but not quite able to persist at equilibrium,
meaning that ¢; = & + $*8/(1 — S*) + ¢;S¥, then it will
take a long time for the inferior species to go extinct.
Notice that regardless of whether the equilibrium state is
relevant on an ecological timescale, the knowledge of the
equilibrium coexistence criterion gives us information to
estimate extinction times.

The opposite case, when the inferior competitor in-
vades a monoculture of the superior competitor, brings
up an interesting issue concerning the value of long-
distance dispersal. If it is stipulated that the inferior spe-
cies is not able to coexist at equilibrium, then the inferior
species cannot invade the superior species even if the su-
perior species is rare and there is ample empty space.
However, intuitively, if there is an abundance of empty
space, an inferior competitor might be able to invade
that space, at least temporarily. In this case, the inferior’s
long-distance dispersal is its downfall. Since it disperses
its offspring globally, it does not stay in the empty areas
but disperses out into areas with a high density of the su-
perior competitor. In this situation, local dispersal can
allow an inferior species to temporarily persist in an
empty area—until the superior species spreads there. A
similar type of mechanism allows two locally dispersing
species to coexist in spatially explicit metapopulation
models in which large portions of habitat are periodically



destroyed (Dytham 1994). Local dispersal can enhance
diversity by allowing species to remain longer in local re-
fugia.

In the same vein, it is possible to consider the conse-
quences of a noninstantaneous time to exclusion within
an individual patch. Previously we assumed that the
within-patch dynamics are very quick (relatively instan-
taneous) compared with the colonization and extinction
processes. We now relax this assumption and assume
that the superior competitor takes a fixed amount of
time, T, to take over a patch already colonized by the in-
ferior. The superior species is unaffected, but the rate of
change of the inferior species is now approximated by

% = —SL = CSi-. I, exp(—ST)

(8)
+ CiIr(l - Ir - Sr)a

where the second term is the loss of patches due to colo-
nization by the superior competitor at time T in the past
(multiplied by the probability that they have not already
gone extinct). At equilibrium, C; can be approximated by
8/(1 — S*) (see the appendix), which gives the coexis-
tence criterion:

- 5S* exp(—91) N 5

(1 — §*)? 1 — ®)

This is the same as criterion (3) except that the first
term (loss of sites due to colonization by the superior
competitor) is multiplied by exp(—8t). When T — 0 and
exclusion is instantaneous, then the original criterion is
obtained. When T — oo, so that the superior competitor
never excludes the inferior species, then this term disap-
pears. The criterion then becomes qualitatively similar to
criterion (6) in the hierarchical model, which did not in-
clude mortality due to colonization by the superior spe-
cies. Between these two extremes, the criterion for coex-
istence is less strict than criterion (3), and it is easier for
the inferior competitor to coexist. However, the conclu-
sions reached earlier remain valid: an inferior competitor
can coexist due to long-distance dispersal alone only
when the superior competitor is rare.

It is also possible to relax the assumption that the infe-
rior competitor can never colonize a patch occupied by
the superior competitor. In particular, one can suppose
that the inferior species can invade sites that have just re-
cently been invaded by the superior species. S. W. Pacala
and M. Rees (unpublished manuscript) have analyzed
this model (with both species dispersing globally) and
have shown that in the limit when the colonization rate
is very much greater than the death rate, the two species
can always coexist. In this case, coexistence of the two
species depends on the unlimited availability of colonists
of both species, while the models outlined in this note as-
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sume that colonization is a limiting process. However,
our results still remain valid. When there is an unlimited
supply of colonists, then the dominant species will be
very common. In this case, long-distance dispersal alone
is insufficient to maintain persistence of the inferior
competitor. Rather, another mechanism must act (in the
case of Pacala and Rees, it is an early successional niche)
in order for the two species to coexist.

Discussion

In this note, we studied long-distance dispersal as mecha-
nism for the coexistence of species and particularly as a
mechanism to overcome the requirement for a coloniza-
tion-competition trade-off. Our analysis makes some
general predictions concerning the dispersal traits of co-
existing hierarchical competitors. When the superior
competitor is common, the inferior competitor should
produce more colonists or their offspring should be bet-
ter able to colonize empty sites. One should not find in-
ferior competitors with only long-distance dispersal and
without a higher colonization rate. If, on the other hand,
the superior species is rare, it is possible for a long-dis-
tance disperser, which is both an inferior competitor and
an inferior reproducer, to coexist. The region of parame-
ter space where this is possible may, however, be very
small. The size of this region depends on the details of
the intraspecific competition experienced by the superior
competitor.

Possible examples of such trends in real systems are
difficult to find as there is relatively little data on dis-
persal distances and measures of competitiveness. How-
ever, one possible example comes from extensive work
on colonization-competition trade-offs in prairie grass-
lands. The superior competitors are not extremely rare in
this example (Tilman and Wedin 1991), and the theory
predicts that poor competitors must send out more colo-
nists during their expected lifespan than superior com-
petitors—even if those colonists are dispersed over
longer distances. Tilman and Wedin (1991) measured
competitive ability and viable seed production of five
prairie grasses. Worse competitors consistently had a
higher seed set, with one exception. The one exception
was Agropyron repens. This species was a poor competitor
with low seed output. The low seed output was not com-
pensated by small seeds that might be associated with
long-distance dispersal; in fact, Agropyron had the largest
seeds. Instead, Agropyron had the highest investment into
rhizomes; in this case, low seed set appeared to be com-
pensated for by high vegetative colonization.

Another example may be sand dune annuals. A nega-
tive relationship has been reported between dispersal
ability and competitive ability; larger seeded sand dune
annuals tend to be better competitors than smaller
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seeded species (Mack and Harper 1977; Rees 1995). Al-
though there are few data on dispersal distances, these
seeds are dispersed passively, and small, light seeds may
reasonably disperse farther than larger, heavier seeds. The
dominant competitors tend to be rare, suggesting that
this is a system in which long-distance dispersal may
allow inferior competitors to coexist without producing
a greater number of colonists. However, as in the prairie
grassland example, we do not see this sort of trade-off.
The inferior competitors (with small seeds) also produce
many more seeds. A final example may be plants that
produce winged seeds (e.g., Fraxinus excelsior and Acer
pseudoplatanus). If long-distance dispersal is a significant
advantage, one might see lower seed production in these
plants. However, data indicate (Grime 1979) that these
winged plants also produce large numbers of seeds.

Neither of these three examples show an obvious dis-
persal distance—competition trade-off (a parameter re-
gion where long-distance dispersal overcomes both a
competitive and colonization disadvantage). Our study
might overplay the existence of a dispersal distance—
competition trade-off because we considered only two-
species competition. In this case, the theory predicts that
long-distance dispersal can compensate for a lower colo-
nization rate when the dominant species is rare. In a
multispecies environment, it is unlikely that all other
species will be rare. In this environment, therefore, long-
distance dispersal may be less of an advantage and coex-
istence may simply depend on producing more seeds.

Clearly, many aspects of natural communities play a
part in determining the relevance of simple theoretical
predictions, such as trade-offs between colonization,
competition, and dispersal distance. Simple spatial mod-
els are caricatures of competition in nature, yet under-
standing their behavior helps clarify the spatial mecha-
nisms that drive the behavior of more complex and
realistic spatial systems.
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APPENDIX
Coexistence Criterion for the Cellular Automaton

Below we derive the coexistence criterion for the cellular
automaton version of model (1). Because the inferior
competitor disperses globally, we can use a mean field ar-

gument to determine its colonization criterion. We spec-
ify the order of events during each time step as: inferior
sends out seed everywhere; superior spreads; superior
dies; inferior dies; inferior’s seeds emerge in the empty
spaces. Since the time step is very, very short, the order-
ing is not critical.

The fraction of sites that are occupied by the inferior
species at time ¢t + dr is the number of inferior sites at
time f that neither die nor are overtaken by the superior
species plus the fraction of sites that are empty and re-
ceived at least one seed. Thus,

Iia = (1 — S — exp(—¢dtl,)) + exp(—¢dtl,)

* Al
x [1, — Sdtl,— (1 — Sdt.)I,f)i—tSS*] oy, Y

The parameters are: c;, the colonization rate; , the death
rate; I,, the fraction of inferior sites at time #; and S*, the
equilibrium fraction of superior sites. The two terms in
equation (A1) are (1) the fraction of sites that are not oc-
cupied by the superior multiplied by the probability of
receiving a seed from the inferior species—this is the rate
that inferior sites colonize empty sites; and (2) a site may
also be occupied by the inferior if it was occupied by the
inferior species in the previous time step and neither died
nor was overtaken by a superior colonist. Thus the sec-
ond term is the fraction of sites that were occupied in the
previous time step minus those that died minus those
that lived but were overtaken by superior colonists. Since
the superior species is at equilibrium, the fraction of sites
it colonizes is equal to the fraction that die, 8S*. These
colonists occur among the available empty sites. Thus
the probability that an inferior site is overtaken is 8S*/
(I — S*). The whole second term is multiplied by the
probability that the site did not receive a seed so that
sites that receive seeds and remain occupied are not
counted twice.

If the inferior species can coexist, then there exists
some [ such that [ = ¢(i). To determine the conditions
under which such a solution exists, note the following:

0’'(x) = ¢;dt(1 — S*)exp(—c;dtx)

+ bexp(—cdtx)— c;dtxb exp(—c;dtx)
= qdtexp(—c;dex)[(1 — S*) — xb]
+ bexp(—cdtx),

where b =1 — ddt - (1 — 8dt)6dtS*/(1 — S*). Note
that ¢’(I) > 0, since I < (1 — S*) and b < 1. Since dt is
small, b > 0. Also,

0" (x) = —cidt? exp(—cdtx)[(1 — S*) — xb]
— 2¢;dth exp(—c;dtx),

(A2)

(A3)



and cb”(f ) < 0. Thus, ¢(x) is strictly increasing and
strictly concave. When ¢(x) has these features, a solution
to ¢(x) = x, where 0 < x < 1, exists if and only if ¢$’(0)
> 1 (Durrett and Lewis 1994). Assuming dt is small so-
that exp(—c;dtx) = 1 and assuming x = 0 (i.e., the lim-
iting case when the inferior competitor is very rare), the
coexistence criterion for the inferior species is

cdt(l — S*) + 1 — ddt

(A4)
— (1 — 8d)8deS*/(1 — S*) > 1.

After dropping terms with dt* and dividing by dt, this be-
comes

) " 8S*

¢ > .
I— s (- s

(A5)
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