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1.1 

 

Introduction 
 
This report, completed in March 2004, summarizes the December 5th, 2003 technical 
workshop on λ methods and the formal scientific review of methods used by NWFSC for 
estimating population trends and extinction metrics as pertains to the 2000 FCRPS Biological 
Opinion.  This report includes the written material and comments submitted by federal, state, 
tribal and independent scientists before and after the workshop.  Specific recommendations 
for the Regional Office pertaining to the use of these methods are attached at the end of this 
report. 
 
Process 
 
As part of a review of the current methods used for assessing status and risk in Pacific 
Northwest salmonids, a white paper reviewing the methods and research papers on these 
methods was prepared by Dr. Elizabeth E. Holmes (NWFSC), “Review of methods, progress 
and cross-validation studies pertaining to population trend and risk assessment for Columbia 
River salmonids”.  Subsequently a workshop was held on December 5, 2003 at the Northwest 
Fisheries Science Center.  The workshop was led by two outside reviewers: Dr. Selina 
Heppell from Oregon State University and Dr. Douglas Deutschman from San Diego State 
University.  The purpose of this workshop was to formally review the white paper and to 
review other scientific progress made by federal, state, tribal and independent scientists in 
estimating population trends and extinction metrics since the 2000 FCRPS Biological 
Opinion.  An announcement was sent out to state, tribal and independent scientists inviting 
them to give presentations of their research at the workshop.  Participants were also invited to 
submit written comments on the white paper by Dr. Holmes to the two reviewers.   
 
After the workshop, Dr. Heppell and Dr. Deutschman prepared a report, which reviewed the 
methods as presented in the Holmes white paper.  The reviewers were given the following 
initial guidance in regards to this report: “The review should be based on a) your professional 
impartial experience, b) the comments you will receive, c) the workshop presentations and 
discussions, and d) the background material.  This review should consider both the methods, 
the research supporting those methods, and comment on the major areas needed for future 
research and methodologies.”  Additionally the following guidance was given on the day of 
the workshop and a copy of this guidance was handed out to all participants: 
“Charge to the Reviewers 

• Scientific review of the paper by Eli Holmes describing methods used in the FCRPS 
Biological Opinion. 

• General Questions for the panel to consider when preparing their review of the workshop: 
o Given the type and quality of data we have across multiple stocks, are we 

using the best available methods to analyze this data? 
o Looking forward and given the progress made thus far, what are the most 

substantial challenges and opportunities for improvement of our capability of 
accessing and portraying status and trends in Columbia River stocks?” 

 
The final report from Dr. Heppell and Dr. Deutschman was received on January 31, 2003.
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Technical Workshop on Population Trends and Extinction Metrics 
December 5, 2003 
 
9:30am Introductions, background and purpose of workshop 

 
10:00 Eli Holmes 

Northwest Fisheries Science Center 
“Estimation and calculation risk metrics for stochastic population 
processes” 
 

10:30 John Payne 
Northwest Fisheries Science Center 
“The flip side of extinction: when can a population be de-listed?” 
 

11:00 Saang-Yoon Hyun 
Columbia River Inter-tribal Fish Commission 
“Risk metrics to spring/summer chinook salmon and steelhead in the 
Snaker River Basin.” 
 

11:30-12:30 Lunch 
 

12:30 Rich Hinrichsen 
Hinrichsen Environmental Services 
“State space approaches to estimating population growth rates” 
 

1:00 Charlie Paulsen 
Paulsen Environmental Research, Ltd. 
“Lambda estimation and prediction: problems and (possible) solutions” 

 
1:30 

 
Earl Weber 
Columbia River Inter-tribal Fish Commission 
"A variable slope stock recruitment function for nonstationary data" 
 

2:00-2:30 Break 
 

2:30-4:30 Open discussion 
 

4:30 Adjourn 
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December 5 Workshop Attendee List 
 

Name Affliation Email 

Anderson, Jim University of Washington jim@cbr@washington.edu 

Athearn, Jim US Army Corp of Engineers 
jim.b.athearn@nwd01.usace.arm
y.mil 

Beaty, Roy BPA rebeaty@bpa.gov 

Bellerud, Blane NOAA Blane.Bellerud@noaa.gov 

Bilby, Bob Weyerhaeuser bob.bilby@weyerhaeuser.com 

Blakley, Ann WDFW blaklab@dfw.wa.gov 

Deutschman, Douglas San Diego State U doug@sciences.sdsu.edu 

Espensen, Barry CB Bulletin bespensen@mev.com 

Geisleman, Jim BPA jrgeiselman@bpa.gov 

Grabowski, Steve US Bureau of Reclamation sgrabowski@pn.usbr.gov 

Hassemer, Pete Idaho Fish & Game phassemer@idfg.state.id.us 

Hatcher, Lynn NOAA lynn.hatcher@noaa.gov 

Heppell, Selina Oregon State U selina.heppell@oregonstate.edu 

Hinrichsen, Richard A. Hinrichsen Environ. Services hinrich@seanet.com 

Holmes, Eli NWFSC eli.holmes@noaa.gov 

Hyun, Saang-Yoon CRITFC scientist HYUS@critfc.org 

Johnson, David H. WDFW johnsdhj@dfw.wa.gov 

Masonis, Rob American Rivers reasonis@amriver.org 

McCann, Jerry Fish Passage Center jmcann@fpc.org 

McClure, Michelle NWFSC michelle.mcclure@noaa.gov 

McDonald, Lyman ISAB lmcdonald@west-inc.com 

Newsom, Michael US Bureau of Reclamation mnewsom@pn.usbr.gov 

Paulsen, Charlie Paulsen Environ. Research cpaulsen@spiritone.com 

Paulsen, Mike Washington Farm Bureau walf@3-cities.com 

Payne, John  NWFSC scientist John.c.Payne@noaa.gov 

Petrosky, Charlie Idaho Fish & Game cpetrosk@idfg.state.id.us 

Peven, Chuck  chuckp@chalenpud.org 

Plummer, Mark NWFSC mark.plummer@noaa.gov 
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Ratner, Sue NWFSC sue.ratner@noaa.gov 

Rudolph, Bill NW Fishletter billr@newsdata.com 

Shutters, Marvin US Army Corp of Engineers 
marvin.k.shutters@nww01.usace.
army.mil 

Slatter, Dave Nez Perce Tribe Fisheries daves@nezperce.org 

Smith, Stephen H. BPA huntersmith@canby.com 

Stein, John NWFSC john.e.stein@noaa.gov 

Toole, Chris NMFS Portland Office chris.toole@noaa.gov 

Ungerecht, Todd NOAA todd.ungerecht@noaa.gov 

Wang, Shizhen Quinault Indian Nation szwang@qwest.net 

Weber, Earl CRITFC scientist WEBE@critfc.org 

Wilson, Amilee WDFW wisonalw@dfw.wa.gov 

Wilson, Paul US Fish & Wildlife paul_h_wilson@rl.fws.gov 

Young, Frank CBFWA frank.young@cbfwa.org 
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BACKGROUND FOR THIS WHITE PAPER 
 

The 2000 Federal Columbia River Power System (FCRPS) Biological Opinion (FCRPS 
Biop) evaluated whether the operation of the FCRPS, when combined with survival rates 
expected to occur in all other life stages of ESA listed salmonids, would result in a “high 
likelihood of survival and a moderate-to-high likelihood of recovery.”  This qualitative 
determination was informed by quantitative estimates for several evolutionarily significant 
units (ESU).  Specifically, NOAA Fisheries evaluated:  

• whether or not there would be a 5% or lower probability of absolute extinction 
of natural spawners within 24- and 100-year periods as a “metric indicative of 
survival;” 

• whether or not there would be at least a 50% probability of the 8-year geometric 
mean natural spawners being equal to, or greater than, interim recovery abundance 
levels in 48 and 100 years as a primary “metric indicative of recovery;” 

• and whether or not there would be at least a 50% likelihood of the annual 
population growth rate (“lambda”) being equal to, or greater than, 1.0 as an alternate 
“metric indicative of recovery” for populations lacking interim recovery abundance 
goals. 
 
The basis for each of these indicator metrics was an analysis of the population growth 

rate associated with time series for relevant spawning aggregations.  Population growth rate 
was calculated using the methods described in McClure et al. (2003).  The Biological Opinion 
specified that several tests based on population growth rate would be conducted in 2005 and 
2008 to ensure that implementation of the Biological Opinion was on track and that 
populations were not declining further.  The Biological Opinion assumed that by 2005 there 
would be more information about methods of calculating population growth rate: 
 

“NMFS anticipates that methods of assessing annual population growth rates will have 
been refined, based on NMFS’ research efforts, those of the Action Agencies, or those 
of independent scientists.  In anticipation of this normal progress in scientific methods, 
NMFS does not now define a specific method by which population growth rate will be 
determined for its mid-point evaluations.  By March 1, 2005, NMFS will choose the 
most appropriate method(s) to estimate population growth rate from the peer-reviewed 
literature, based on collaboration with the Action Agencies, USFWS, and the state and 
Tribal comanagers.” 

 
In June 2003, the Biological Opinion was remanded in National Wildlife Federation v. 

NMFS.  NOAA Fisheries is currently in the process of revising the Biological Opinion and re-
evaluating the effects of FCRPS operations and offsite mitigation activities.  To facilitate this 
process, the NOAA Fisheries Northwest Regional Office (NWRO) requested that the 
Northwest Fisheries Science Center (NWFSC) conduct the above-referenced review of 
population growth rate estimation methods in 2003.  In addition, the NWRO requested that that 
the NWFSC review related methods of characterizing population trends, especially those that 
had been suggested as alternatives to “lambda” estimation in comments on the draft of the 
original Biological Opinion and in comments or litigation since the Biological Opinion was 
issued. 
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INTRODUCTION 
 

The purpose of this report is to review and discuss methods for estimating and 
presenting population trends and extinction risks for Columbia River salmonid populations to 
support management decisions, such as the ESA Section 7 determination in the 2000 FCRPS 
Biological Opinion and the anticipated 2005 and 2008 check-in tests.  This report reviews 
research since 2000, which tests and validates diffusion approximation methods for estimating 
population trends and risks.  This review summarizes information from the following 
publications: 
 
Holmes, E. E.  2004.  Beyond theory to application and evaluation: diffusion approximations 

for population viability analysis.  In press in Ecological Applications. 
Fagan, W. F., E. E. Holmes, J. J. Rango, A. Folarin, J. A. Sorensen, J. E. Lippe, and N. E. 

McIntyre.  2003.  Cross-validation of quasi-extinction risks from real time series: an 
examination of diffusion approximation methods.  Pre-print. 

McClure, M., E. Holmes, B. Sanderson, and C. Jordan.  2003.  A large-scale, multi-species risk 
assessment:  anadromous salmonids in the Columbia River Basin.  Ecological 
Applications 13: 964-989. 

Holmes, E. E. and W. F. Fagan. 2002.  Validating population viability analysis for corrupted 
data sets.  Ecology 83: 2379-2386 

Holmes, E. E.  2001.  Estimating risks in declining populations with poor data.  Proceedings of 
the National Academy of Science 98: 5072-5077. 

 
Summary of work and changes as they pertain to the methods in FCRPS 
Biop 
 
Changes in the methods for estimating trend and risk: 
 1)  Running sum filter has been standardized to use a simple sum of four consecutive 
spawner counts.  The work leading up to Holmes & Fagan (2002) clarified that this was better 
than the age-structure based running sum that was originally used. 
 
Cross-validation work 
 The bulk of the work has focused on validating the methods using real time series 
(Holmes & Fagan 2002, Fagan et al. 2003) and more realistic simulations that include density-
dependence (Holmes 2004).  Also the underlying assumptions of the diffusion model were 
tested using simulations of salmon models with density-dependence (Holmes 2004). 
 
Expressing uncertainty 
 Holmes & Fagan (2002) test the variability in parameter estimates from the Dennis-
Holmes method and found that the variability is properly estimated.  Holmes (2004) begins 
looking in-depth at how to express uncertainty in a way that it can best inform regulatory 
decision-making.  Confidence intervals are commonly given, but are not very useful beyond 
showing that there is high or low uncertainty.  Bayesian approaches are explored in Holmes 
(2004).  A Bayesian metric is also used in McClure et al. (2003), specifically the probability 
that λ is less than 1.0 or less than 0.9. 
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THE NATURE OF POPULATION TRAJECTORIES AND RISK ESTIMATION 
Real populations do not grow or decline at fixed rates, but rather show year-to-year 

variability in population growth rates, which leads to a population trend that varies about some 
long-term growth rate.  Figure 1 shows an example of three population trends that each have 
the same long-term trend (5% per year decline) and the same year-to-year variability.  Even 
though the population trends were generated with the same underlying dynamics, the 
trajectories are different.  This is nature of populations: random chance means that there are a 
range of different possible population trajectories given some underlying population dynamics.  
Even though we cannot predict exactly what will happen in the future, if we could estimate the 
underlying dynamics governing the population trajectories, we could estimate the probability 
of different futures, i.e. we could estimate the probability of reaching critical thresholds.  We 
can also estimate whether the population has long-term declining dynamics.  To do this, we 
will need to estimate the following: the long-term rate of decline (or growth), the year-to-year 
variability in yearly population growth, and the amount of corruption in our data.  Within the 
population dynamics literature, the year-to-year variability in yearly population growth is 
termed ‘process error’; note that it is not technically ‘error’ in the layman’s sense of the word, 
but rather variability.  The rest of the variability is termed ‘non-process error’ and this includes 
actual observations errors.  For the purpose of this review, one can think of process error as the 
variability that drives the long-term variability of future population size and the non-process 
error as the data corruption that is preventing us from estimating the process error. 
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Figure 1.  Sample simulated population trajectories from a population with average 5% yearly 
decline.  The underlying population dynamics are identical.  The differences are due to chance. 
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The term λ denotes the long-term rate of population decline (or growth).  It is simply 
the long-term trend that you would observe if you had a very, very long time series of the 
population.  The term λ is the standard notation in the conservation biology literature.  λ = 1 
means stable, λ = 1.01 means roughly increasing 1% per year, and λ = 1.05 means roughly 
increasing 5% per year.  Similarly, λ = 0.99 and λ = 0.95 mean roughly declining 1% and 5% 
per year, respectively.  Note that we can only estimate λ; we never know the true λ.  Our 
estimates may be unbiased, but that still means that there is a 50/50 chance that the true λ is 
above or below our estimate. 

One of the most common questions is “If λ is the population trend, why not just present 
the overall trend observed in the data, such as a regression of log numbers versus time?” as 
opposed to going through the analysis based on theory concerning the dynamics of population 
trajectories, which is presented in the next section.  There are two main reasons why this is 
insufficient. 

1)  We need to estimate uncertainty.  The trend tells you what happened but does not by 
itself tell you how likely it is that this trend happened by chance and that the long-term 
dynamics are actually quite different.  For example, suppose we collect data on a population 
that has a true long-term average rate of decline of 12% yearly.  Figure 2 shows an example of 
the population trend observed from 20-year consecutive time series from this population.  
Segment 1 is from year 1-20, segment 2 is from year 2-21, etc.  The wavy lines show the 
estimates using different methods for estimating the trend; the true value is the straight dashed 
line.  The solid line (“ML”) is a simple regression of log natural abundance.  The wavy dashed 
line shows the runsum method used in McClure et al. (2003) and the Biop.  There is much 
variability in the observed trend in a 20-year segment.  This variability is an unavoidable 
aspect of analyzing stochastic population processes.  Population dynamics theory allows us to 
estimate this year-to-year variability and thus estimate how likely it is that a particular 
observed trend came from a population with a particular true λ (such as an increasing or 
declining population).  But to do this, the estimate of the underlying process error in the 
population dynamics is needed.  A natural response would be to argue that standard regression 
analyses will give you the uncertainty of the estimated trend, but unfortunately such analyses 
attribute all error to non-process error and will give you incorrect uncertainty estimates. 

2)  We need to estimate probabilities of crossing critical thresholds.  The trend by itself 
does not give much information about the probability of dropping below critical population 
sizes.  We cannot simply extend the trend into the future and see when our line crosses the 
threshold.  Populations vary from year to year and even a population that has a positive growth 
rate still has some probability of dropping below the critical threshold by chance.  To estimate 
this probability, we again need to estimate the process error driving the variability in long-term 
population sizes. 

In the following section (section I), I review how the parameters driving a population 
process are estimated using diffusion approximation methods.  This section also reviews the 
extensive cross-validation work that was done to verify the applicability of these methods for 
salmon populations.  This section directly applies to the methods used in the FCRPS Biological 
Opinion.  At the end of this section, there is a discussion of alternative risk estimation 
methodologies and why they were not used.  The next section (section II) discusses work that 
goes beyond the methods used in the 2000 FCRPS Biological Opinion.  One of the challenges 
when presenting scientific analyses is presenting the uncertainty in a useful and accurate 
manner.  It is tempting to use the point estimates of risk metrics (i.e. ‘this stock has a λ of 
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0.981’) and ignore that this is a statistical estimate.  λ = 0.981 may be the most likely value 
given the data, but λ = 0.99 is probably almost equally as likely and λ = 1.01 may be entirely 
plausible.  Section II illustrates the use of probability curves as a way to formally express this 
uncertainty.  This is a standard approach in decision theory for resource management. 

 

 
Figure 2.  Estimated log(λ) from 20-year segments in a time series.  Segment 1 is year 1-20, 
segment 2 is year 2-21, segment 3 is year 3-22, etc.  This shows how the estimates vary 
depending on the segment observed.  The “runsum” method is that used in McClure et al. 
(2003) and for the Biological Opinion calculations. 

 
I.  DIFFUSION APPROXIMATION METHODS FOR POPULATION VIABILITY 
ANALYSIS 

In the last decade, diffusion approximation (DA) methods have been developed that use 
count data alone (for example, spawner counts) for the estimation of population viability 
analysis (PVA) risk metrics, such as the probability of crossing extinction thresholds, mean 
passage times, and average long-term rates of population growth or decline (Lande and Orzack 
1988, Dennis et al. 1991).  These methods have since been used to estimate extinction risks for 
numerous species of conservation concern (Dennis et al. 1991, Nicholls et al. 1996, Gerber et 
al. 1999, Morris et al. 1999, McClure et al. 2003).  The appeal of DA methods from an applied 
standpoint is their simplicity and their reliance on simple census data alone (e.g. neither age-
structure, cohort-level analyses, or total fish numbers are required).  They have become one of 
the basic quantitative tools presented in recent books on PVA methods (Morris and Doak 2002, 
Lande et al. 2003).  

Diffusion approximation methods stem from theory concerning the behavior of 
stochastic age-structured population models with no density-dependence,  
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where At is the stochastic population transition matrix, e.g. a Leslie matrix, for time t.  Note 
that most types of cohort or otherwise age-structured population simulations with no density-
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dependence are specific cases of the general model in Eq. 1.  For such models, the asymptotic 
behavior of the total population size, ∑=

i
tit nN , , is a stochastic exponential process 

(Tuljapurkar and Orzack 1980, Tuljapurkar 1989): 
big  for   ),0(normal~),exp( 2

0 tttNN ppt σεεµ += .                          [2] 
and log Nt/N0 is distributed normal with mean=µt and variance=σ2t for t big.  The parameter µ 
in Eqn. 2 determines the rate at which the median log population size, log Nt, increases through 
time, while σ2 determines the rate at which the distribution spreads, or in other words, the 
variability of potential population sizes at time t+τ.   

Diffusion approximation methods assume that Eqn. 2 holds for all τ > 0 including small 
τ and that the ε are independently and identically distributed.  This allows one to model the 
population as a diffusion process (Lande and Orzack 1988): 

)|(log
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                                    [3] 

P(y) means the probability of y.  The diffusion model has the property that log Nt/N0 is 
distributed normal(mean=µt, variance=σ2t) like the stochastic exponential process it is used to 
approximate.  See Dennis et al. (1991) for a much fuller discussion of the diffusion 
approximation.  

This approximation opens a toolbox of parameterization methods for linear models with 
normal error.  It also provides analytical estimates of quasi-extinction probabilities, i.e. the 
probability of crossing a particular threshold at some time within a given time frame.  Strictly 
speaking, however, an age-structured population process is not a diffusion process.  However 
despite the assumption violations, the diffusion model approximates many types of stochastic 
age-structured population processes, as seen both from simulated and real data (Lande and 
Orzack 1988, Dennis et al. 1991, Holmes and Fagan 2002, Fagan et al. unpublished 
manuscript, Holmes 2004).  In particular as will be reviewed below, the diffusion 
approximation works well for salmon population models (Holmes 2004). 
 
Parameter estimation methods 

Diffusion approximations for a particular PVA must be carefully selected since a poor 
choice results in poor, highly biased estimates which lead to poor, highly biased risk estimates.  
Holmes (2004) discusses these issues and careful selection of parameterization methods using 
salmon data as an example.  McClure et al. (2003) presents methods for estimating log(λ) and 
σ2, which have been used by NWFSC scientists for salmon PVA.  These methods have been 
extensively validated with real and simulated salmon data (see next section). 

The basic estimation methods currently used for the Biop are presented here without 
discussion; see McClure et al. (2003) for a discussion and examples.  The methods use a 
running sum transformed time series of spawner counts defined as 
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where Ot is the spawner count at year t.  The estimate for log(λ), which is denoted µ, is 
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The estimate of σ2 uses the rate that the variance increases within the time series: 
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 These estimators will likely appear somewhat peculiar on first introduction.  Note that 
the µ estimate is very similar to a linear regression of log population counts (typically log 
spawner counts).  Why use the estimator with a running sum transformation of the data?  
Extensive testing described in Holmes (2001), Holmes & Fagan (2002) and especially Holmes 
(2004) indicates that the runµ̂  gives the least variable estimates of µ (see also Figure 2).  
Estimation of the process error is an especially difficult problem.  Holmes (2004) reviews the 
currently available methods in the literature.  Again extensive cross-validation work (see 
especially Holmes 2004) found that 2ˆ slpσ  performs the best for salmon data. 
 One of the difficult problems with analyzing salmon spawner data is that hatchery fish 
are input into the stocks.  Perhaps the easiest way to see how this presents a problem for 
estimating λ is to consider the analogy of a mutual fund.  Suppose you put $1000 into a mutual 
fund 5 years ago and now you have $8000.  You would like to know what the average rate of 
return (this is λ) has been so that you can decide whether to keep you money in this fund or 
move to another.  Normally, you would just take (8000/1000)^(1/5) = 1.51, which means that 
your fund returned an incredible 51% per year.  However, your benevolent aunt has been 
automatically adding $100 a month to your brokerage account, and you need to factor this in 
(these are the hatchery fish).  Problem is you don’t know whether her monthly gift was added 
to your mutual fund (the hatchery fish reproduce) or was simply deposited to your brokerage 
account but not invested (the hatchery fish don’t reproduce).  Without this information, you 
can only deduce the range of the possible average rates of return for your mutual fund.  If not 
added to mutual fund, the rate of return was ( (8000-100*12*5)/1000 )^(1/5) = 1.15, which is 
still a nice 15% per year.  If added to the mutual fund, rate of return is found by finding the λ 
that solves:  

8000 = 1000*λ^5 + 100*∑
=

5*12

0

12/

i

iλ , 

which is λ = 1.05 and means a rather paltry 5% per year growth.  Thus, knowing whether the 
monthly deposits were added to your mutual fund or not is a critical bit of information you 
need to evaluate how good a mutual fund you have.  This is exactly the estimation problem we 
have with hatchery fish.  We need to know whether or not they are reproducing in order to 
evaluate the underlying population growth rate.  In McClure et al. (2003) and in Holmes 
(2004), the hatchery correction is presented.  In the McClure et al. PVA, the range of λ for 
hatchery fish not reproducing versus are reproducing is shown.  For the Biological Opinion, the 
range of λ is shown for hatchery fish reproducing 20% as effectively as wild-born fish versus 
80% as well as wild-born fish. 
 
Risk metrics 
 From the parameters µ and σ2, a number of different risk metrics can be calculated.  We 
have focused on two metrics.  The first is the median yearly growth rate or the long-term 
yearly growth rate, which is denoted λ.  Suppose you were able to observe 1000 20-year 
population trajectories with the same underlying dynamics (i.e. the same µ and σ2 parameters) 
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and each starting from the same initial size, much like Figure 1.  The trajectories would all look 
different due to chance.  The yearly growth rate you observed in the ith (out of the 1000) 
trajectory is 

λi = [(end population size)/(start population size)]^(1/(number of years)-1) 
The median λi from all 1000 would be exp(µ); on average 50% of trajectories would show a 
yearly growth rate greater than exp(µ) in those 20 years and 50% would show a lower growth 
rate.  An estimate of this median yearly growth rate is what we term λ.  It also happens to be 
the yearly growth you would observe from a very long time series since λi goes to exp(µ) as 
the number of years gets very large.  This is why the λ estimate is referred as an estimate of the 
median yearly growth rate or the long-term yearly growth rate.  For a particular time series 
with n years, the λ estimate is 
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13 RR
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== µλ                                        [7] 

The second metric is the probability of hitting a particular critical population threshold, 
Ne, within some period of time te, starting from the population size N0.  This is calculated from 
a diffusion approximation of the population process (Dennis et al. 1991): 
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The function Φ is the standard normal cumulative distribution function.  If you are interested in 
percentage-wise declines, e.g. 50%, 75% or 90%, then it is not necessary to know the actual 
population size, since (N0/xN0) = (1/x).  In this case, the probability of crossing critical 
thresholds can be estimated using on index data without information on the total number of 
spawners.  If however, declines to specific absolute thresholds are of interest, total spawner 
counts are needed and it is also necessary to transform the spawner count into a count that 
reflects the total population rather than just spawners in a particular year.  See McClure et al. 
(2003) for a discussion of this transformation. 

 
Validation studies of diffusion approximations for salmon populations 

Here I review cross-validation studies of the performance of the diffusion 
approximation model for salmon data and populations, including populations experiencing 
density dependence.  Holmes (2004) discusses evaluation of the diffusion approximation and 
estimation methods using simulated data.  This study used detailed population models for 
Upper Columbia River steelhead, Snake River fall chinook, and Snake River spring/summer 
chinook as examples.  The models were parameterized from survivorship and fecundity data 
from these ESUs.  The models include density-dependence in parr to smolt survivorship 
reflecting that found in low density Snake River chinook stocks (Achord et al. 2003).  The 
models also include sampling error in the range of that observed for redd-count data (standard 
error 0.3 to 0.85). 
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The first question in this study was whether a diffusion approximation correctly 
described the behavior and probability of crossing thresholds for the age-structured models.  
The first test described in Holmes (2004) is an examination of the linearity assumptions 
inherent in the diffusion approximation.  This key test is somewhat technical, and is described 
in Holmes (2004).  The results of this test were that the linearity assumptions were satisfied for 
t > 5 years which means that (as is well-known) the diffusion approximation should be used to 
make medium and long-term projections not short-term projections (t < 5 years).  The second 
test was whether a diffusion approximation would properly characterize the probability that the 
simulated time series would cross a threshold (in this case, 90% decline) in different time 
frames.  This analysis is shown in Figure 3.  The gray line shows the actual probability of 
crossing the 90% decline threshold within different time frames (determined by repeating the 
salmon simulations 1000s of times) versus the probabilities from a diffusion approximation.  
This illustrates that the probability of 90% decline in these salmon time series can be described 
by a diffusion approximation. 

 
Figure 3.  Actual versus predicted probability of 90% decline within different time horizons.  
From Holmes (2004). 

 
Simply because a diffusion approximation exists which properly characterizes a 

particular population process does not mean that we can estimate the parameters for that 
process given realistic data constraints.  Holmes (2004) also studies estimation performance 
given data constraints faced by the PVA of Columbia River salmon stocks (McClure et al. 
2003): 1) counts of only the spawning segment of the populations, 2) time series limited to 20 



White Paper    2.11 

E. Holmes 

years, 3) severe age-structure perturbations in the beginning of some time series due to 
reproductive collapses during dam construction (Williams et al. 2001), and 4) high observation 
error in the spawner counts.  Figure 4 shows box plots of the estimates of log(λ) following the 
estimation methods described above (also in McClure et al. 2003) for 1000 random simulations 
from the three species’ models.  The output from the models (spawner counts) was ‘corrupted’ 
by different levels of sampling error: age (meaning an age perturbation due to no reproduction 
in one year), low, medium and high observer error.  The dotted line in the graph shows the true 
value of log(λ).  In the box plots, the middle line is the median estimate of log(λ) and the box 
encloses 75% of the estimates.  As can be seen in the figure, the runsum method for estimating 
log(λ) works for these simulated salmon time series even within the data constraints; the 
median estimate is the true value even with added observer error in the spawner counts. 
 

                     Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Type of Error Added 

 
Figure 4.  Distribution of log(λ) estimates using runµ̂  from 1000 simulated time series from 
age-structured models of Snake River spring/summer chinook, Snake River fall chinook, and 
Upper Columbia steelhead.  The models include density-dependent smolt survivorship.  From 
Holmes (2004). 
 

Figure 5 shows a similar analysis for the estimation of the process error, termed σ2.  Recall that 
the process error specifies the variability of potential future population trajectories and is a key 
parameter determining the probability of crossing thresholds.  This analysis indicates that for 
low observation error 2ˆ slpσ  provides an unbiased estimate of the true value of σ2, but as 
observation error increased, the estimate becomes increasingly biased.  ‘Medium’ represents 
the average estimate of typical observation error in the Columbia River data based on studies 
of observer error in redd count data (see discussion in Holmes 2004). 

 
                      Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Figure 5.  Distribution of 2ˆ slpσ  estimates from 1000 simulated time series from age-structured 
models of Snake River spring/summer chinook, Snake River fall chinook, and Upper Columbia 
steelhead.  The models include density-dependent smolt survivorship.  From Holmes (2004). 
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Simulated data is very useful, however it is ‘simulated’ and certainly lacks some 

aspects of real time series data.  Another cross-validation (Holmes and Fagan 2002) involved 
testing the bias and precision of the diffusion approximation parameter estimates using 
hundreds of real time series.  The strategy was to use the first 15 years of a time series to 
predict the second 15 years of the time series.  The bias and variability of these predictions 
could then be tested against the predicted bias and variability.  The two parameters tested were 
log(λ) and σ2, which appears in the probability of crossing thresholds metric along with log(λ).  
Figure 6 shows the results of this analysis for the log(λ) estimates.  This analysis involved 30-
year time series within a 1920 to 1999 time frame. 

 
Figure 6.  Distribution of actual log(λ) estimates (bars) versus predicted distribution (solid black 
line from 147, 42 and 47 chinook, steelhead and Snake R spring/summer time series 
respectively.  From Holmes and Fagan (2002). 
 

The close match between the observed and predicted distributions indicates that the log(λ) 
estimate was properly characterized in terms of its mean value (the peaks match).  That is the 
mean trend in the first half of the time series was the same as the mean trend estimated in the 
second half of the time series.  Figure 6 also demonstrates that the uncertainty in the log(λ) 
estimate (its variability) was also properly characterized since the width of the distributions 
match.  

That the mean trend in the first 15 years was the same as the mean trend in the second 
15 years appears at first glance to contradict the observations of strings of good years versus 
bad years.  However keep in mind that this analysis used 30-year time series across the 1920 to 
1999 period.  It was asking about the average estimate across different time periods.  What 
about estimates only during a specific time period?  Figure 7 shows the difference between the 
trend in the first 15 years of a time series versus the following 15 years for specific time 
frames, i.e., not the average across all time periods, but the average if you only look at time 
series in a specific time period, say 1970-1999.  The solid line is a measure of the difference 
between the trends in the first 15 years versus the following 15 years.  Deviations above zero 
indicate that on average there was a more declining trend in the first 15 years versus the next 
15; while deviations below zero means that on average the population was declining less in the 
first 15 years versus the next 20 years.  These results show the average difference from all the 
West Coast time series put together.  What you can see is that across the West Coast, stocks 
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were on average declining more in 1959-1973 versus in 1974-1993 while the opposite was true 
for 1964-1978 versus 1979-1998. 

 
Figure 7.  The solid line measures the difference between the average trend in the first 15 years 
versus in the second 15 years from a collection of 30 year time series of West Coast chinook 
and steelhead stocks (200+ stocks).  “Mean of t-statistics” = 0 means that the average trend 
(across the whole West Coast) was similar in the first 15 years versus the following 15 years.  
“Mean of t-statistics” > 0 means that the on average stocks were declining more in the first 15 
years relative to the following 15 years.  The year on the x-axis denotes the start of the middle 
of the 30-year segment.  The dashed line is the 95% confidence intervals for a random collection 
of time series, i.e., if there were no underlying environmental cycles causing “good” and “bad” 
series of years.  Holmes unpublished analyses. 

 
It is tempting to attribute these ‘good’ versus ‘bad’ strings of years to an environmental 

driver, such as ocean conditions that one could presumably model.  While this may be the case, 
the data by themselves do not necessarily support this since this type of cycling good and bad 
strings of years can happen simply by chance in a collection of stochastic population time 
series.  Indeed this is what Figure 2 illustrates.  The dotted lines in Figure 7 show the 95% 
confidence intervals assuming that the time series were all completely independent.  This is a 
conservative estimate since they are not all independent and the true 95% confidence intervals 
are farther apart.  What we can see is that the solid line falls within the conservative 95% 
confidence intervals suggesting this West Coast pattern of good and bad strings of years is not 
inconsistent with the hypothesis that it occurred by chance. 

The Holmes and Fagan (2002) analysis also looked how well the diffusion 
approximation predicted the probability of 90% decline.  This analysis searched for a 
difference between the mean diffusion approximation estimates of the probability of 90% 
decline and the observed mean probabilities within the collection of West Coast salmon time 
series.  Figure 8 shows the estimated versus actual mean probabilities.  The gray solid line 
(Dennis-Holmes) is the method used in the salmon PVA (McClure et al. 2003).  The close 
correspondence between the actual and observed indicates that first the diffusion 
approximation approach is correctly estimating the mean probabilities and second that the 
parameters of this approximation were not being systematically misestimated.  Note that this 
analysis focuses on mean estimates of probability of decline.  The issue of the variability in 
estimates of probability of decline is addressed later in this document. 
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Figure 8.  Probability of 90% decline versus observed probabilities with the West Coast salmon 
time series.  From Holmes and Fagan (2002). 

 
Why the diffusion approximation approach versus other approaches for describing 
trends and risks in salmon populations? 

Diffusion approximation approaches for estimation of risk metrics are grounded in 
theoretical work on stochastic population processes (reviewed in Holmes and Fagan 2002 and 
Holmes 2004).  These methods are one of the basic quantitative tools in population viability 
analysis and are featured in two current books on quantitative methods for analyzing 
population data (Lande et al. 2003, Morris and Doak 2003).  The long-term rate of population 
growth is termed λ and is one of the most commonly used risk metrics within the field of 
conservation biology.  Note that λ does not refer to a specific method of estimation, but rather 
simply the median or long-term trend in the population.  There are a variety of methods for 
estimating λ.  The most familiar within the conservation biology literature is to calculate λ 
from estimated Leslie matrix models.  Diffusion approximation approaches present a way to 
estimate λ when only time series is available, and present a method for estimating the 
uncertainty in λ, which estimated Leslie matrix models do not provide. 

However in the context of salmon management, traditionally other metrics of risk and 
population trend have been used.  Some of the typical metrics that have been used or suggested 
are log recruits per spawner, SARs, 8-year geometric means of the natural cohort return rate, a 
simple regression of log natural abundance versus time, and residuals from a stock/recruit 
relationship.  Some of these (log recruits per spawner and a regression of the log abundance 
versus time) have a close relationship to λ and indeed can be viewed as alternate methods for 
estimating λ.  Many of the other methods, however, differ in a fundamental way in that they 
measure only a portion of the life cycle, i.e., survivorship or fecundity of only certain stages 
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rather than from spawner to spawner.  One of the key aspects of λ is that it integrates across the 
entire life-cycle.  It is not a measure of one stage’s survivorship or fecundity alone, but rather 
of the integration of survivorship and fecundity over the entire life cycle, much like a spawner-
to-spawner ratio does.  This is important when one is trying to assess a population rather than a 
particular stage since high survivorship in one stage can easily be offset by low survivorship in 
another stage. 

Below the methods that have been more common in salmon management are discussed 
in terms of how they relate to λ and the estimation long-term population trends. 

 
Log recruits to the spawning grounds per spawner 
 Log recruits (to the spawning ground) per spawner is another way to estimate log(λ) 
since the expected value of ln(R/S) = log(λ).  This can be derived from theory on stochastic 
population processes (see review by Caswell 2001, 14.3.2) and is essentially what is shown by 
Eqn 14.47 in Caswell (2001) – although this probably will not be transparent on first glance.  
Obviously the estimates you get of log(λ) from Eq. 5 versus ln(R/S) are going to be different 
for a specific finite time series; you expect this using different methods even though the 
expected values (the average estimates) are identical.   

If ln(R/S) can be used to estimate log(λ), why not use that since it is more familiar for 
fisheries biologists?  First it is not a more accurate nor less variable estimator – a simple 
simulation demonstrates this.  Second it requires much more data and effort to estimate – 
despite not providing an increase in precision in the estimation of log(λ).  To the extent that the 
age-at-return data contains errors this adds additional errors to the ln(R/S) estimate.  Third, if 
we want to compare stock status for example to prioritize recovery actions, using a consistent 
method across all stocks is critical.  For the vast majority of stocks, the additional data to 
estimate R/S is not available so we can’t estimate ln(R/S).  Fourth, establishing the uncertainty 
in the estimate of ln(R/S) would be difficult.  We would either have to model the error in age-
at-return data, which would require some ad hoc assumptions since we have limited 
information on this error, or we would have to bootstrap from limited age-at-return data.  Fifth, 
we would still have to estimate the process error and estimating this from ln(R/S) data alone is 
not possible if the population is affected by both process and non-process error. 
 
8-year geometric means of the natural cohort return rate 
 This metric uses the 8-year geometric mean of the spawner-to-spawner ratio for the 
natural spawning component of the population.  Like ln(R/S), this another way to estimate λ.  
The reasons for not using this metric are the same as those for not using ln(R/S); see above 
discussion. 
 
Smolt-to-adult ratios (SARs) 
 SARs, along with other measures of survivorship, are clearly important for analyzing 
how survivorship changes within a portion of the salmon life cycle.  However this metric 
leaves out the adult-to-smolt portion of the life cycle.  For the purpose of tracking the long-
term trends, the entire life cycle, spawner-to-spawner, must be included since increases in 
smolt-to-adult survivorship could be offset by decreases in adult-to-smolt ratios.  Thus, SARs 
are not used for estimating long-term trends. 

Note also that SARs detailed types of data, which are not available for many stocks and 
makes their analysis regionally limited. 
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Simple regression of log natural abundance versus time 

λ is the regression of log spawner counts versus time for an infinite (i.e. very long) time 
series.  One way to estimate λ is to use the regression of log spawners versus time for the 
available, finite, time series.  This method could have been used, but simulations indicated that 
it gives estimates that are essentially the same as the runsum estimates (Figure 9).  Even if one 
did use a regression, one needs to use the methods in McClure et al (2003) to get the 
confidence intervals on λ.  The confidence intervals on the regression cannot be used since this 
attributes all error in the data to observation error.  This is incorrect; part of the error is process 
error and part of it is observation error, and one needs to use a statistical framework that 
properly apportions the error into these two types.  In addition, one still needs to obtain the 
estimates of environmental variability, which are critical for estimates of the probability of 
crossing thresholds.  The regression will not provide this since again a simple analysis of the 
variance of the residuals attributes error to observation not process error.  Holmes (2004) 
reviews the currently available methods for parameter estimation for population processes with 
process and observation error. 
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Figure 9.  Example of stimated log(λ) from 20-year segments in a time series with µ = -0.05 and 
σ2 = 0.02.  Segment 1 is year 1-20, segment 2 is year 2-21, segment 3 is year 3-22, etc.  This 
shows how the estimates vary depending on the segment observed.  The regression line (solid 
black) is from a regression of log counts versus time; the “runsum” method (red dashed) is that 
used in McClure et al. (2003) and for the Biological Opinion calculations. 

 
Residuals from a stock/recruit relationship 
 Residuals for a stock/recruit relationship give information on how conditions in one 
year or cohort deviate from some longer trend.  This can be useful for trying to determine if 
underlying changes for the long term trend has occurred, but is not useful for estimating the 
long term trend itself.  Potentially these residuals could be used to estimate the environmental 
variability, although this is certainly not straight-forward.  The variability in the residuals will 
be due not only to environmental variability but also variability due to density-dependence and 
the proclivity of salmon for “boom-bust” cycles.  These latter types of variability are important 
for the short-term variability in population trajectories, but tend to dampen out with time and 
are less important for the long-term variability in population trajectories.  Holmes (2004) gives 
an example of this using age-structured salmon models with density-dependence. Note also 
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that residuals for a stock/recruit relationship also require age-structure data, which makes their 
analysis limited to stocks with that kind of detailed data. 
 
Other methods 

The methods used in McClure et al (2003) require very simple data, spawner time 
series, however, there are populations with much better and more detailed data, especially age-
at-return and age-specific survivorship data.  Incorporation of this data into the estimation of µ 
can increase the precision of the µ estimate, and consequently the λ estimate.  Hinrichsen 
(2002) discusses estimation of λ using age-at-return information and shows how using this 
information increases precision although there is no change in bias relative to the λ estimate in 
McClure et al. (2003).  The downside is that the methods in Hinrichsen (2002) are sensitive to 
high levels of observation error, for example, standard deviation of observation error greater 
than 0.7, which is certainly seen in redd count data (see discussion in Holmes 2004).  More 
analytical work needs to be done to get around this sensitivity to observation error, but 
certainly this research suggests that more precise λ estimates can be obtained for those stocks 
with more extensive data.  This is an area that is very promising, however, for regional 
analyses where we need to compare risks among stocks, some of which are data poor, we will 
have to continue to have and rely on methods that use only spawner time series for the sake of 
consistency. 

Lindley (2003) presents state-space estimation for noisy time series and offers this as 
alternative to the estimation methods used in McClure et al.  State-space estimation enables 
maximum-likelihood estimation of µ and σ2 from noisy data (such as we have for salmon 
data).  It has a strong statistical foundation.  I have also been researching state-space estimation 
and tested Lindley’s algorithm in Holmes (2004) and found that it gives much worse estimates 
of σ2 than 2ˆ slpσ  given the particular characteristics and constraints we face with salmon data.  
The m estimates were similar to runµ̂ , however.  I have also investigated a slightly different 
state-space algorithm for estimation and found similar results.  State-space estimation is 
extremely promising, but a significant amount of research is still need to come up with 
algorithms that perform more robustly than the current methods in McClure et al. 
 
Summary 
 While these commonly used metrics are useful for other questions, such as looking for 
survivorship changes in a particular habitat or life stage or understanding the contributions of 
particular age classes to recruitment to the population, they are limited in terms of estimating 
long-term trends, either because they look at just a segment of the population, lead to λ 
estimates that are more variable than the λ estimates used in the Biological Opinion, or require 
data that is not available across all populations.  Furthermore these other methods do not lead 
us to an estimation of underlying variability in the population process (process error), which is 
essential for estimation of the probability of crossing critical population thresholds and for 
calculating the uncertainty in our risk estimates.  The methods used for estimating λ and 
extinction metrics as described in McClure et al. (2003) have been extensively studied and 
validated with West Coast salmon time series (Holmes & Fagan 2002) and also salmon-
specific simulations which include density dependence (Holmes 2004). 
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The time frame of ones data and  λ estimates 
 Typically choices must be made about the data, specifically the years, to use to estimate 
λ.  The point estimate of λ will depend on the time frame used, however keep in mind that in 
general the point estimate of λ should never be used alone since by itself the point estimate 
does not give an indication of the uncertainty in this estimate.  One way present the uncertainty 
is to use confidence intervals, but confidence intervals are often misleading since they give the 
erroneous impression that the true value is equally likely within a large interval.  Likelihood 
profiles or posterior probability distributions of λ are much more useful and give a rapid feel 
for the uncertainty in the estimate of λ.  If one uses a posterior probability distribution, it 
becomes clear that the estimate of λ is not so sensitive to the time frame of the data or the 
addition of one extra year of data as would appear when only point estimates are presented. 

This being said, selection of a reasonable time frame is very important.  The following 
considerations should generally be kept in mind when selecting the time frame to use:  a) more 
data is better, b) the time frame should be representative of historical trends, i.e. not be 
dominated by ‘good’ or ‘bad’ conditions and not dominated by an isolated perturbation and c) 
for the sake of uniformity and comparison, the time frame should be consistent across stocks.  
In McClure et al. (2003) the effect of using different time frames for estimation, specifically 
1980-2000 versus 1960-2000, on risk metrics for the Columbia River ESUs is shown.  The 
differences were not statistically significant nor in any consistent direction, i.e. for some stocks 
the 1980-2000 time period gave slightly more severe risk estimates and for others it gave less 
severe estimates. 

From a management standpoint, λ estimates that vary widely depending on the exact 
starting year of the time series are problematic, and research showing that the estimates are 
statistically optimal while satisfying does not lessen this practical problem.  There are a couple 
of strategies that I have proposed to deal with this:   

1) Use robust estimators of the mean for the µ estimates.  Currently in Eqn. 5, a straight 
mean is used, however a straight mean is highly sensitive to outliers.  My preliminary 
tudies of the effect of different start years on λ estimates using Snake River 
spring/summer chinook time series indicated that a robust estimator of the mean 
eliminated much of the problem of λ estimates that vary widely depending on the start 
year.  There are a variety of robust mean estimators; a trimmed mean is the simplest.   

2) I examined the 1970s to present data throughout the Columbia River and found that 
the 1980-present data was affected by an especially unusual series of years between 
1978-1982 or so.  The estimates using the 1980-present time frame appeared to be more 
different that one would expect compared to estimates using any other time frame.  My 
initial analysis suggested that 1976-present would generally be a better time frame to 
use, although this does suffer from dam effects in the early years for some stocks.  The 
1984-present data could also be used to avoid the 1978-82 period, however, a strong 
argument can be made that this overly emphasizes a period characterized by bad ocean 
conditions. 

 
II.  ACCOUNTING FOR UNCERTAINTY IN RISK ESTIMATES 

A certain amount of variability in estimated parameters and risk metrics is an 
unavoidable aspect of the analysis of stochastic population processes, simply due to the nature 
of these processes.  One of the strengths of diffusion approximation methods is that the 
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statistical distributions of the estimated parameters are known.  As a result, the uncertainty in 
the estimated risks can be calculated.  This is often not the case for other PVA approaches.  
Even though the uncertainty in diffusion approximation risk metrics can be calculated, this 
uncertainty is definitely high.  In this situation, examining either the likelihood functions or the 
posterior probability distributions for the risk metrics, rather than simply the point estimates 
and confidence intervals, will help to clarify the level of data support for different true risk 
levels.  Statistical decision theory (e.g. Berger 1985 is one of many texts on decision theory) 
provides a framework for integrating estimates of the data support for different risk levels with 
the consequences of true risk levels.  Wade (2000) and Dorazio and Johnson (2003) provide 
recent discussions of this Bayesian decision framework in conservation biology and resource 
management contexts.   

The idea in a nutshell is to estimate the probability that the risk metric, for example λ, 
is within particular ranges that are important from a management perspective.  For example: 

 
< 0.9 0.15 
0.9 – 0.95 0.3 
0.95 – 1.0 0.5 

Probability 
the true λ is 

in these 
ranges > 1.0 0.05 

Table 1.  Estimated probabilities that λ is within different ranges. 
 
These probabilities are estimated using the posterior probability distribution that is estimated 
from the data.  Figure 10 gives an example of the posterior probability distribution for λ 
estimated from a 38-year times series of spring chinook in the Upper Columbia River basin 
(data from T. Cooney, NMFS).  The probability that λ is within the range a to b is calculated 
by integrating the posterior probability distribution between a and b. 
 

 
Figure 10.  Estimated posterior probability distribution for λ for Upper Columbia spring 
chinook.  From Holmes (2004). 
 
There are a variety of ways these probabilities could be used.  They might be used 

alone and qualitative thresholds set, such as if the probability that λ is less than 0.95 is greater 
than some threshold, then an such and such actions can (or cannot) occur.  Note that the 
probability of a low λ can be high due to certainty that λ is low or due to uncertainty about λ.  
Thus, such a strategy leads to caution in the face of high uncertainty.  A more quantitative, 
decision-theoretic, approach can be taken if the probability that actions will be ‘sufficient’ 
(however that might be defined) can be calculated given different true λs.  For example, 



White Paper    2.20 

E. Holmes 

 
 

  Probability of action being ‘sufficient’ 
  Action A Action B Action C 

< 0.9 0.3 0.1 0 
0.9 –0.95 0.5 0.3 0.2 
0.95-1.0 0.8 0.6 0.5 λ range 

> 1.0 1.0 1.0 0.8 
Table 2.  Estimated probabilities of action sufficiency given different true λ ranges. 

 
These probabilities are multiplied by the probability of λ being within those ranges and then 
summed over all ranges to give the total probability that actions are ‘sufficient’.  This 
probability incorporates the uncertainty in the estimated λ: 
 

Probability of action being ‘sufficient’ 
Action A Action B Action C 
0.64 0.45 0.35 

Table 3.  Probabilities in Table 2 multiplied by those in Table 1 and summed over all λ ranges. 
 

An example where the probabilities in Table 2 would be relatively easy to calculate is different 
harvest levels.  Instead of giving a simple ‘yes/no’ answer as would be the case if using point 
estimates of λ, this approach quantifies the uncertainty in our estimate of λ and emphasizes 
that there is not a simple “100% or 0%” probability of an action being effective. 
 Probabilities of crossing thresholds are notoriously uncertain and variable, and 
analyzing the uncertainty connected with a proposed probability metric (e.g. ‘probability of 
extinction’) is especially critical when using these metrics.  Figure 11 shows the estimated 
probability density distributions for the probability of 90% decline within 25, 50 or 100 years 
given a 20-year time series with an estimated λ of 1 or 0.93.  The distributions when the 
estimated λ is 1 are fairly flat or U-shaped.  This indicates that there is not much information 
about what the probability of 90% decline is.  The estimation of the probability of 90% decline 
can be improved by using an informative prior on the process error.  Twenty years of data is 
not sufficient for accurate process error estimates.  If one argues that the variability driving 
long-term dynamics is similar across chinook throughout the basin, then one might use as an 
informative prior the distribution of process error estimates for a large number of stocks 
throughout the basin.  Figure 12 shows how the estimation of the probability of 90% decline 
improves using an informative prior.  Now it appears that estimation of the risk of 90% decline 
in 50 or 100 years is fairly informative for the stock with a low λ.  For the stock with a λ equal 
to 1,  50 and 100-year probabilities are uncertain, but 25-year probability are much better. 
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Figure 11.  Estimated posterior probability distribution of the probability of 90% decline in 25, 
50 and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and an estimated 
process error of 0.08 and estimated non-process error of 0.71.  A uniform prior on the process 
error was assumed. 
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Figure 12.  Estimated posterior probability distribution of the probability of 90% decline in 25, 
50 and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and an estimated 
process error of 0.08 and estimated non-process error of 0.71.  A highly informative prior on the 
process error was assumed. 

 
 These last two figures focus on the probability of 90% decline in 25, 50 or 100 years.  
There are other ways to look at the probability of 90% decline that can be more informative.  
For example, here is an analysis of the probability of an eventual 90% decline for based on the 
Upper Columbia spring chinook time series (from Holmes 2004).  The estimated probability of 
eventual 90% decline is almost 1.0, that is it is almost certain to occur (Figure 13, top), 
however there a great deal of uncertainty as to when this will occur (Figure 13, bottom) except 
that it is highly likely within 100 years.  Figure 13, bottom panel, shows the expected 
probability of 90% decline within a given time frame.  From the figure, on average there is a 
70% probability of a 90% decline within 50 years for this population and an average 80% 
probability that the 90% decline occurs within 100 years. 
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Figure 13.  Estimated posterior probability distribution of eventual 90% decline in the  Upper 
Columbia spring/summer chinook (top panel) and the probability that this decline has occurred 
within different time frames (bottom panel).  From Holmes (2004). 

 
The time to 90% decline can then be put into Table form similar to Table 1 for λ ranges (Table 
4) which can then be combined with a Table similar to Table 2 for the probability that an 
action will be sufficient if 90% decline does not occur until after x years. 

 
> 25 yrs 0.7 
> 50 yrs 0.38 
> 75 yrs 0.2 

Probability 
90% decline 
only after x 

years > 100 yrs 0.18 
 

Table 4.  Probability that 90% decline does not occur until after x years.  From Figure 13, 
bottom panel. 

 
Quasi-extinction threshold versus absolute extinction 

Throughout this paper, the probability of 90% decline is discussed.  The probability of 
90% can be estimated for stocks for which we only have index data and not total spawner 
information.  Thus it can be more widely applied.  However, decline to specific critical 
population sizes are also of great importance in PVA analyses.  Although estimating extinction 
to 1 individual is a popular risk metric, and unfortunately sometimes mandated, caution is 
required when using the diffusion approximation is to estimate extinction to very low numbers 
since factors that drive dynamics at very low population sizes (such as demographic 
stochasticity) and the catastrophes often associated with ultimate extinction will likely be 
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poorly represented in a time series of a relatively larger population declining to low numbers.  
There have been a wide variety of papers published on this in the conservation biology 
literature.  The general recommendation is to estimate the probability of decline to some 
critical population size (quite a bit greater than 1); this is termed a ‘quasi-extinction’ threshold.  
Fagan et al. (unpublished manuscript) studied a collection of actual time series of species that 
went extinct and compared diffusion approximations for quasi-extinction thresholds versus 
extinction to 1 individual.  This analysis found that quasi-extinction estimates (to a size much 
greater than 1) using diffusion approximations fit the observed data, but that extinction 
estimates (to 1 individual) were very poor and underestimate the true risk. 

With this in mind, one might ask why was the probability of decline to 1 individual 
estimated in the McClure et al. analysis.  The reasons for this were four-fold.  1) The analysis 
was focused on estimating risks if current conditions continue as they appeared in the time 
series data.  It was recognized that this would tend to underestimate risks if factors such as 
density-depensation occurred as the population got small, however baseline estimates of risks 
under current conditions are required in order to make meaningful statements about risks under 
hypothetical future scenarios, such as lower population growth rates as the population gets 
small.  2)  The probability of 90% decline does not incorporate the actual population size.  The 
implications of a 90% decline of a population of 10 individuals is quite different than a 90% 
decline for a population of 100,000 individuals.  The probability of decline to 1 individual 
provided a risk metric that incorporated both the overall rate of decline of the population and 
the population size.  Thus we could then compare ESUs in terms of a risk metric that integrates 
these two factors –regardless of whether this is an underestimate of the true probability of 
extinction.  3) Any other extinction threshold we could have specified would have been 
arbitrary – given the information we had on critical population size.  Decline to 1 individual is 
meaningful for all populations.  4) The Fagan et al. analysis had one notable exception, i.e. one 
population where the probability of extinction would be properly estimated.  That was the one 
population time series that followed an actual salmonid extinction (sockeye); the rest of the 
time series followed bird and reptile extinctions. 
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Richard Hinrichsen 
 
11 Dec. 2003 
 
Review of white paper "Review of methods, progress and cross-validation studies 
pertaining to population trend and risk assessment for Columbia River salmonids 
(November 2003 draft)," and supporting documents by Elizabeth E. Holmes. 
 
Summary 
The white paper reviews and discusses methods for estimating population trends and 
extinction risks and summarizes recent work published by Holmes and others in the peer-
reviewed scientific literature. Extensive work was done to validate the diffusion 
approximation model for salmonid population data subject to potentially high 
measurement error. My review focuses primarily on methods for strengthening the 
estimates of stochastic growth rate and dealing with nonstationarity. It also discusses 
evidence for ocean/climate regime shift effects on salmon population growth rates. 
 
Extinction risk and trend 
Extinction risk is estimated based on current estimate of population size, trend, and 
variability. The 2000 Biological Opinion jeopardy analysis focused on probability of 
extinction and probability of recovery as the critical metrics, not lambda per se. The 
reviewers should comment in detail on the strengths and weaknesses of using 100-year 
extinction probability in the jeopardy analysis as opposed to a more reliable measure such 
as lambda. How accurate is PVA in its ability to predict the future status of wild 
populations 100 years into the future? Holmes (2001) argues for using lambda as a risk 
measure because reliance on a risk metric with recalcitrant estimation problems 
(extinction risk) is hard to justify when an equally useful and more reliable measure is 
available.  
 
Coulson et al. (2001) pointed out the many pitfalls in population viability analysis. They 
argue that “PVAs can only be accurate at predicting extinction probabilities if data are 
extensive and reliable, and if distribution of vial rates between individuals and years can 
be assumed to be stationary in the future, or if any changes can be accurately predicted.” 
Salmon populations are known to undergo large nonstationary changes in vital rates due 
to ocean/climate regime shifts and changes in harvest rates. These are not treated in the 
current CRI analysis because it assumes a stationary process. 
 
Strengthening lambda estimation 
The current approach to estimating and characterizing the uncertainty in lambda is to 
provide separate estimates of stochastic growth rate and sigma^2.  Stochastic growth rate 
is estimated using a running sum approach that uses the same amount of smoothing on 
each of the data sets to which it is applied. The sigma^2 estimate is calculated using the 
the slope method of Holmes. This approach yields confidence intervals based on a t-
distribution with degrees of freedom equal to  
 
 d.f. = .333 + 0.212*n - 0.387L (for n > 15) 
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where n is the length of the time series and L is the number of counts summed to 
calculate the running sum (currently 4) (Holmes and Fagan 2002).  In the normal i.i.d. 
case, the degrees of freedom are usually (d.f. = n-1), so it is clear that the current 
approach presents inefficient estimate of stochastic growth rate in order to reduce the 
effects of bias. Based on the formula above, in order for the CRI estimates to achieve 20 
d.f., 100 spawner observations are needed. In order to achieve just 10 d.f., 53 spawner 
observations are needed. Using the 22 spawner observations over 1980-2001, which is 
the current time period for estimating stochastic growth rate, gives us just 4 d.f., which is 
quite poor. At 4 d.f., the variance of the t distribution is twice as large as it is for 21 d.f. 
Thus the slope based method comes at a price: a dramatic loss of precision. 
 
To regain some accuracy in stochastic growth rate while also accounting for 
measurement error, I would recommend the following: 
(1) Combine several populations from an ESU to make inferences about stochastic 
growth rate. Model selection criteria may support using a single stochastic growth rate for 
several populations. 
(2) Do not treat the populations in (1) as independent. Model the covariability so 
precision estimate is not inflated. 
(3) Choose a method that allows the level of smoothing of the spawner series to change 
with the estimate of measurement error. High measurement error should increase 
smoothing which low measurement error should reduce smoothing. As it stand the CRI 
method uses a high level of smoothing (4 year running sum) for all series. 
(4) Check to see if common variances are supported by the data. 
(5) Allow for the possibility of stochastic growth rate changing due to different harvest or 
ocean/climate regime shifts. The current models may be misinterpreting dramatic shifts in 
vitality rates as part of a noise process rather than nonstationarity. 
 
Kalman filter 
 
The Kalman filter approach I presented at the 5 December workshop can incorporate 
these suggestions naturally. Lindley (2003) recently applied the Kalman filter approach to 
model a single salmon population. More generally, a Kalman filter approach applied to 
multiple stocks is 
 

Qtttt =ηη+µ+α=α − )var(,1 (state equation) 
  

Hy tttt +εε+α= )var(,  (measurement equation) 
 
where  tα   is a 1×m  vector of states,  µ  is a 1×m  vector of population-specific or 
common stochastic growth rates, tη is a multivariate normal noise process with mean 0 
and mm × variance matrix Q , ty  is a 1×m  vector of log(spawner) observations, tε  is a 
multivariate normal error term with mean zero and mm × variance matrix H . 
 
Smoothing. It may be shown that the stock-specific stochastic growth rate estimates are 
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where T is the number of yearly observations, and Tta | is the smoothed estimate of the 
state at time t. It is defined as  
 

),,,|( 21| TtTt yyyEa Kα=  
 
When measurement error in the data increases, the state estimate is based on greater 
smoothing of the observations. When measurement error is low, the state estimates track 
the observations closely. Thus, unlike the running sum approach, the level of smoothing 
used to estimate the stochastic growth rate depends on the measurement error estimate 
(Figure 1). 
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Figure 1. The level of smoothing used by the Kalman filter is greater when measurement 
error is larger as demonstrated in the above graphs.  
 
 
Common stochastic growth rate. It is possible to estimate a common stochastic growth 
rate for the model described above so that all populations have the same stochastic 
growth rate parameter. This is accomplished by specifying a single parameter in the µ 
vector. We can then use the likelihood function to calculate AIC and see if the model 
with a common stochastic growth rate is better supported than the model with stock-
specific stochastic growth rates. Preliminary results show that spring/summer chinook 
index stocks in the Snake River can be combined to increase the accuracy of stochastic 
growth rate (Table 1). 
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Table 1. Stochastic growth rate estimates. The model with common 
stochastic growth rate gives a more precise estimate as indicated by 
relatively low value of SE (see bolded value). Furthermore, the 
common stochastic growth rate model has lower AIC. The stock-
specific stochastic growth rate model has AIC of 416 while the 
common stochastic growth rate model has AIC of 407. 
Stock stochastic 

growth 
rate 

SE Mean Bias* 

Bear Valley and Elk Creek 0.15 0.25 -0.03 
Marsh Creek 0.12 0.38 -0.03 
Sulphur Creek 0.12 0.42 -0.03 
Big Creek 0.12 0.27 -0.02 
Lemhi River 0.10 0.19 -0.01 
upper Valley Creek 0.11 0.18 -0.03 
All (common stochastic growth rate 
model) 

0.19 0.08 -0.04 

*Mean bias as fraction of SE.  
 
Process error variance bias. The Kalman process error variances tend to be biased 
downwards, but not to the degree described by Holmes (2003; Figure 3) in the paper 
"Beyond theory to application and evaluation: diffusion approximations for population 
viability analysis."  At the workshop Holmes indicated that the log(process error 
variances) are not biased in mean, but are highly biased in median. My analysis shows 
that the median bias is actual smaller than the mean bias, but that bias is consistently 
downward. Some bias correction procedure appears to be needed. The largest mean bias 
was seen in the Lemhi River population which had log(process error variance) that was 
50% of standard error (SE).  
 
Table 2. Log(process error variance) estimates from Kalman filter assuming stock-
specific stochastic growth rates.  
Stock Log(var estimate) SE Mean bias* Median bias* 
Bear Valley and Elk Creek 0.25 0.35 -0.28 -0.25 
Marsh Creek 1.07 0.35 -0.28 -0.21 
Sulphur Creek 1.28 0.43 -0.30 -0.22 
Big Creek 0.37 0.41 -0.27 -0.19 
Lemhi River -0.29 0.48 -0.46 -0.29 
upper Valley Creek -0.44 0.47 -0.21 -0.10 
*Bias as fraction of SE. 
 
 
Correlations.  The variance matrix for the process error indicates high correlations among 
the stocks (Table 3). This suggests that one should not use an estimation procedure that 
treats the process error of the stocks as independent. Careful consideration of the 
correlation structure is needed, and the Kalman filter can explicitly model this structure. 
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Table 3. Process error correlations among stock (Kalman filter estimates). The 
stock-specific stochastic growth rate model was used. 
Bear Valley and Elk Creek 1.00   
Marsh Creek 0.99 1.00   
Sulphur Creek 0.90 0.94 1.00   
Big Creek 0.98 0.95 0.80 1.00   
Lemhi River 0.75 0.78 0.84 0.66 1.00  
upper Valley Creek 0.98 0.97 0.89 0.95 0.86 1.00 
 
Nonstationarity 
Because ocean/climate regime shifts and harvest rates can have large effects on stochastic 
growth rate, it is important to have a modeling framework that can accomodate 
nonstationarity. One way to deal with this is to explicitly model the nonstationarity using 
a state space model. One approach would be to rewrite that state equation as 
 
 

tttt ηµαα ++= −1 (state equation) 
 
Where tµ is a step function described by two parameters (for each population) that can be 
estimated from the spawner abundance series. If the shift is thought to have a common 
effect on all of the stocks, that jump in the step function can be estimated as a parameter 
common to all stocks.  As another possibility, if there are enough stocks in the analysis, it 
may be possible to model the nonstationarity by allowing tµ  to be determined by a series 
of parameters estimated for every year in the series. In this case, 
 

ett θµµ += 0  
 
where 0µ is a vector representing the mean stochastic growth rate for the populations, 

tθ is a scalar series such that ∑
=

=
T

t
t

1

0θ , and e is a vector of 1s. The various models can be 

compared based on their AIC scores or some other model selection criteria. 
 
Validation work done by Holmes shows a rather large shift in stochastic growth 
corresponding to the 1977 regime shift, but indicates that the shift does not reject the null 
hypothesis of no shift at the 5% significance level. But it must be remembered that 
changes in harvest scenarios corrresponding to changes in population levels can mask the 
effects of regime shifts. For example, total fishing for ocean and in-river Snake River fall 
chinook fisheries was reduced by 30 percent or more from pre-listing rates (See 
http://www.nwr.noaa.gov/1salmon/salmesa/pubs/harvest2.html).  This harvest shift took 
place during the period used for calculating lambdas in the 2000 BiOp (1980-1999). 
Furthermore, there was no attempt to quantify the power of the test aimed at detecting a 
regime shift. Regime shifts may be important, but not detectable using the Holmes 
estimators in the cross-validation test. The Kalman filter approach gives a natural way to 
test for a significant shift by directly estimating shifts in the state dynamics. Power to 
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detect important shifts can also be easily quantified, and can be made greater by 
appropriately combining information from salmon populations in a single model.  
 
 
Ocean/climate regime shifts 
 

It is becoming increasing apparent that ocean/climate regime shifts play a role in 
salmon productivity and have a potential to create shifts in stochastic population growth 
rates that are distinct from a stationary mean noise process. Below, I summarize work on 
salmon and ocean/climate regime shifts over the last several years. 

The National Research Council’s Committee on Protection and Management of 
Pacific Northwest Anadromous Salmonids identified that what happens at sea is 
important to the conservation and management of Pacific salmon. Interdecadal changes in 
the ocean environment, especially in water temperature, currents and biological 
communities, influence the growth and survival rates, and in turn the returns of adults 
(National Research Council 1996).    

The poor ocean conditions for Columbia River salmon over the last 20 years are 
in part due to the dramatic decrease in food available for young juvenile entering the 
ocean. Drops in zooplankton and primary productivity, which feed the salmon food 
chain, showed a dramatic decrease off the West Coast around 1977, creating a relatively 
barren ocean environment for West Coast juvenile salmon (Hare et al. 1999).  

Ocean/climate regime shifts are signaled by large changes in an index called the 
Pacific Decadal Oscillation (PDO). In Figure 1, the PDO is illustrated.  This is an index 
that characterizes the month-to-month current patterns, and temperature and sea level 
pressure distributions in the North Pacific.  Researchers have found that positive values 
of the PDO correspond to a warmer North Pacific and negative values correspond to a 
cooler ocean (Hare et al. 1999, Mantua et al. 1997).   Most significant is the cyclic nature 
of the PDO occurring approximately every 20-30 years during the last 100 years. The 
PDO and other indicators indicate that the North Pacific Ocean suddenly shifted between 
the warm and cool regimes four times in the past century.  Historically these occurred in 
1925, 1947 and 1977. The recent PDO information 
(http://tao.atmos.washington.edu/pdo/) suggests a shift may have occurred in 1998 with 
the ocean changing from the warm regime that began in 1977 to a cool regime.  Recently, 
Peterson and Schwing (2003) used synchronized shifts in the PDO, zooplankton volumes, 
coho salmon survival, and biomass anomalies of cold-water copepod species as evidence 
of a 1998 shift.  

 The regime after the shift in 1947 favored Columbia River salmon populations, 
but the shifts after 1925 and 1977 were found to be unfavorable to Columbia River 
salmon.   

Besides characterizing the ocean environment, the PDO is also related to 
streamflow, which affects the ecosystem of salmon in rivers. Streamflow records from 
British Columbia and Washington State indicate relatively dry conditions during the 
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1977-1997 period, Mantua et al. (1997) conclude that, “[t]o the extent that high 
streamflows favor high survival of juvenile salmon, PDO-related streamflow variations 
are likely working in concert with the changes to the near-shore marine environment in 
regard to impacts on salmon production.”  
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Figure 1. Winter values of the Pacific Decadal Oscillation, an index of sea surface 
temperature and temperature characterizes the state of the surface waters of North Pacific 
Ocean. The PDO index shows that the ocean cycles between a warm regime, identified 
by a positive PDO, and a cool regime, in which the PDO is negative.   

 

Figure 2.  Depicted is log(run size) with the mean subtracted, where run size is the 
estimated number of upriver spring chinook (those that spawn above Bonneville Dam) 
arriving at the mouth of the Columbia. Data are available from Oregon Department of 
Fish and Wildlife, (http://www.dfw.state.or.us/odfwhtml/infocntrfish/interfish/crm.html). 
Positive value bars are black, negative are gray.  Dotted vertical lines are drawn to mark 
the PDO polarity reversal times in 1925, 1947, 1977, and 1998. 

-3

-2

-1

0

1

2

1900 1920 1940 1960 1980 2000

lo
g(

ru
n 

si
ze

) -
 m

ea
n



Written comments submitted by participants  3.8 

R. Hinrichsen 

Figure 2 illustrates how the abundance of upriver spring chinook has shifted with 
the PDO.  Abundance is expressed as the estimated run size of spring chinook destined to 
areas upstream of Bonneville Dam. This run includes stocks from the Snake River 
spring/summer, the Upper Columbia River spring-run chinook ESUs. The data were 
updated versions of data in Oregon Department of Fish and Wildlife and Washington 
Department of Fish and Wildlife report  (ODFW and WDFW 1999). Notice that run size 
was above average in the cool ocean regime, below average after the 1977 PDO shift, but 
returned to above average after the 1998 PDO shift. 

The background level used in the 2000 FCRPS BiOP was used to project salmon 
populations over a century was derived from a period of poor ocean conditions for 
Columbia River salmon stocks (years 1980 through 1997) (Hare et al. 1999). For most of 
the past 20 years, ocean/climate conditions have been unfavorable to Columbia River 
salmon production. Assuming the base period’s low background survival rate continues 
into the future overestimates the risk of stock extinction.  Recent return rates are well 
above average, and some have hypothesized that ocean conditions may be shifting to a 
more favorable regime.  

The scientific literature contains ample information from peer-reviewed scientific 
papers that the poor ocean conditions of the 1980s and 1990s are not permanent, and that 
the climate and ocean experience regime shifts which have large impacts on salmon 
production (Mantua et al. 1997; Hare et al. 1999). Finney et al. (2000) used sediment 
records to show that salmon abundance in Bristol Bay and Kodiak Island regions of 
Alaska have showed market shifts over the past 300 years, and that some pronounced 
changes appear to be related to climatic changes.  
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Extinction predictions 
 
Extinction predictions assume two things: that the future will be like the past (same mu 
and sigma) and that extinction will be caused by a continuation of past long-term trends, 
and not by novel or anomalous events not reflected in past data. 
 

Since the estimated distribution of ln(Nt+1/Nt) is used to forecast declines, if the 
extinction event is anomalous, extinction itself will not be predicted based on the 
information in the estimation period. (Fagan et al p. 16) 

 
This suggests some kind of anomalous final collapse. Though disconcerting from 
the perspective of population prediction, such sudden, catastrophic events do 
mirror our conceptual understanding of the extinction process (Fagan et al p. 20) 

 
In contrast to the successes we observed, the diffusion approximation model’s 
most striking failure was its inability to predict actual extinction events. 
Examining the populations that actually went extinct, we found that both 
parameterization techniques (Dennis and Dennis- Holmes) did a distinctly poor 
job of signaling the real vulnerability of the populations… (Fagan et al p. 20) 

 
Extinction, under the DA model, can only come about as the result of long-term, gradual 
declines (e.g., birth rate < replacement rate over many years, as in Italy or Germany).  In 
fact, it appears that most extinctions are the result of catastrophes that are not well-
predicted by DA methods.  For salmon stocks in question, the only recent (past several 
decades years), well-documented extinctions have occurred due to stocks’ exclusion from 
large spawning areas (upper Clearwater, above Grand Coulee and above Hells Canyon), 
and from deliberate poisoning with rotenone (of sockeye in Idaho lakes).  None of these 
would have been predicted by DA methods alone. 
 
Conclusion: either do not try to predict extinction, or place very large caveats around any 
such predictions.  
 
Measurement Error 
 
The Dennis-Holmes method differs from the Dennis method in that it assumes that some 
variation in abundance is due to measurement error rather than process error.  Clearly, 
measurement error may be problematic.  However, the examples cited (Dunham & 
Reiman 2000, Jones et al 1998, Hilborn et al 1999) are of very limited relevance for the 
stocks in question.  The first deals with bull trout, a smaller, non-anadromous species 
which builds redds that are much smaller than those of chinook, steelhead, and coho.  The 
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other two address problems with live, transect-style counts (rather than redd or dam 
counts) of pink salmon spawning aggregates, a physically smaller and far more abundant 
species than listed salmon and steelhead.  The Holmes November 2003 review (p. 9) 
notes that “[t]he models also include sampling error in the range of that observed for 
redd-count data (standard error 0.3 to 0.85)”, but I can find no cite to sources for these 
estimates (they do not, so far as I can tell, appear in Achord et al 2003).   
 
Conclusion: if examples of measurement error can indeed be found for listed stocks, or at 
least for the same species of salmonids, it would be very useful to see these in detail in 
the DA methods review.  If not, appropriate disclaimers should be attached to the 
analyses, to the effect that while measurement error is assumed in the Dennis-Holmes 
method, we have no empirical estimates of it for the listed species. 
 
Stationarity 
 
A substantial and growing body of literature strongly suggests that cycles in salmonid 
survival – most likely due to climate effects - are the norm rather than the exception.  
Furthermore, these climate changes are typically considered to be large, step-function 
shifts, as opposed to simple autoregressive processes.  If this is also the case for listed 
stocked, this would obviously violate the stationarity assumption of DA methods.   
 
A closely related body of research suggests that one can expect that salmon stocks of the 
same species, rearing in close proximity, to exhibit strong correlations in abundance, 
recruits per spawner (R/S), and life-stage survival rates.  These correlations are of 
technical interest because they enable one to use information from large collections of 
stocks to estimate model parameters.  They are also of interest from a management 
perspective as well, since they strongly imply that the assumption of stock independence 
made in DA’s to date do not hold in practice.  Taken together, these would suggest that 
the failure to discover these relationships with DA methods (e.g., Holmes, “Review of 
methods …”, Figure 7) are limitations of the DA method, and not indications that regime 
shifts and correlations among stocks do not exist.   
 
Nearly all of these publications either compare multiple stocks with similar spawning 
locations (e.g., Snake River spring/summer chinook) or aggregates (e.g., all spring 
chinook spawning above Bonneville Dam), rather than the stock-by-stock approach taken 
for the majority of DA analyses.  In addition, no other analysis that I am aware of that 
looked for climate effects or multi-stock correlations grouped different species and 
assumed similar responses to climate, as is the case in Figure 7 (steelhead and chinook).  
See next two sections for more details and conclusions. 
 
Climate effects 
 
A growing body of literature shows that sharp, step-wise changes in climate are common 
wherever long-term series of climate indices are available (e.g., Ware, 1995, Beamish et 
al 1999, Hare and Francis 1994, Downton and Miller 1998). The references merely 
scratch the surface of a rapidly growing field of study. 
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A number of recent publications strongly suggest that climate-induced changes in 
survival rates, R/S, and/or harvest follow step functions.  These include Adkinson et al 
1996 (BC sockeye R/S), Beamish et al 1999 (BC coho catch), Bradford and Irvine (BC 
coho R/S), Downton and Miller 1998 (sockeye, pink, and chum catch), Koslow et al 2002 
(coho marine survival), Mantua et al 1997 (catch, various spp.), Mueter et al 2002 
(Oncorhynchus spp. R/S), and Ware and Thompson 1991 (sardine and other spp. catch).  
All of these publications use either multi-stock R/S approaches (e.g., Adkinson et al 
1996, Mueter et al 2002) or use catch aggregated across multiple stocks.  To my 
knowledge, no one to date has detected climate step-function effects in single stocks – the 
data are simply too noisy to permit such analyses. 
 
Conclusions: where data permit it (long time series and R/S having much higher power 
than short abundance time series) do systematic checks for step functions.  Especially for 
longer time series, harvest estimates should be used to adjust spawning abundance, since 
rates were much higher pre-1980, the cut-off for most time series in the BiOp.  Power and 
sensitivity analyses for the DA approach would also be useful, to se if climate effects are 
detectable (I’m guessing power will be very low) and how sensitive the DA approach is 
(guessing not very, due to very high variance). 
 
Multi-stock approaches 
 
Fortunately, there are many techniques available to model correlations or covariance in 
stock-specific spawner abundance, R/S, and life-stage survival rates.  Botsford and 
Paulsen (2000) reviews methods for cross-stock correlations on abundance and R/S, and 
applies these to a number of Columbia basin spring/summer chinook stocks.  Paulsen and 
Hinrichsen (2002) apply R/S regression methods to Snake River spring/summer chinook.  
Peterman et al (2000) apply Kalman filters to Pacific salmon, while Pyper et al (2002) 
apply regression methods to chum salmon, and Pyper et al (2001) apply similar methods 
to pink salmon. Paulsen and Fisher (2001) and Paulsen and Fisher (2003) use regression 
models applied to multi-stock estimates of juvenile survival.  All R/S methods and 
Paulsen and Fisher (2003) find density-dependent effects in the vast majority of stocks, as 
well as strong covariation in indicators (abundance, R/S, or survival). 
 
Note that only Botsford and Paulsen (2000) use abundance in their analyses.  This 
suggests that information on age-at-return (for R/S) or life-stage survival rates will be 
needed for multi-stock modeling, although Hinrichsen’s presentation at the lambda 
workshop used Kalman filters on abundance data to good effect. 
 
Conclusion: multi-stock approaches have done very well at detecting effects that are too 
subtle for single-stock approaches.  Where data permit, different analyses using 
abundance, R/S, and other metrics over time is recommended to compare stocks and 
investigate common effects due to climate, hydropower, etc. 
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The following comments were submitted by Dr. Kris Ryding of WDFW after the 
workshop on April 26, 2004.  These comments are included here for the record but the 
reviewers Drs. Deutschman and Heppell did not have an opportunity to read these before 
they prepared their report.  This memo was based on a review of the white paper, and 
many of the issues brought up in this memo are directly addressed in the original papers 
and their appendices: Holmes (2001), Holmes and Fagan (2002), and Holmes (2004). 
 

TECHNICAL MEMO 

TO: POPULATION TRENDS REMAND GROUP 

FROM: KRIS RYDING, FISHERIES BIOMETRICIAN, WDFW 

SUBJECT: POPULAITON TREND ASSESSMENT 

DATE: 10/5/2004 

  

Comments on the estimation of population trends presented at the March 23rd 

meeting, and presented in the paper ‘Review of methods, progress and cross-validation  

studies pertaining to population trend and risk assessment for Columbia River salmonids” 

(Holmes 2003). are divided into four areas. The first section concerns the separation of 

process and sampling error based on the conditional variance formula, and is a follow-up 

to the discussion on estimation of process error from regression from the March 23rd 

meeting. The second area concerns the distribution of the running sum. Third set of 

comments includes a general variance expression the finite rate of increase as estimated 

by ( )ln /t tR Rτ+ , written in terms of spawner abundance and incorporating observational 

error. The fourth area involves a general discussion of parameter estimation methods. 

Suggestions for the analysis are presented last.  

 

1.) Process error estimation. 
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The empirical variance of spawners can be written in terms of process and 

sampling error using the conditional variance formula as follows, 

( ) ( )( ) ( )( )ppppp SSVarESSEVarSVar ˆˆˆ += , 

where   ( )pSVar ˆ   = the empirical variance among all spawners,  

( )( )pp SSVarE ˆ  = the average measurement error and,  

( )( )pp SSEVar ˆ  = the process error.  

If the sampling process for estimating spawners is known, then the average measurement 

error, ( )( )pp SSVarE ˆ , and subsequently process error, can be calculated.  

The process error can also be estimated from the mean square error of a 

regression model. Recall that the empirical variance or total variance of the dependent 

variable is the sum of the regression variance and mean square error. Hence,  

( )
( ) ( )
( ) ( )( ) ( )( )( )
( ) ( ) ( )( ).ˆˆˆ

ˆˆˆ

ˆ

ˆ

2

ppppp

ppppp

p

p

SSVarSSVarMSRSVar

SSVarESSEVarMSRSVar

MSRSVar

MSEMSRSVar

++=

++=

+=

+=

εσ
 

where  MSR  = the total error from the regression, 

 MSE  = the residual error, 

( )ˆ
p pVar S S  = natural variability (process error) which incorporates demographic 

stochastisity and, 

( )ˆ
p pVar S S  = average measurement error. 

 

Consequently, variability in spawner abundances that are a result of time or 

environmental covariates can be accounted for using regression analysis through the 

mean squares regression term  (MSR). 
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2.) Distribution of the running sum. 

Estimation of the finite rate of increase, or population trend, is based on a running 

sum of spawner data, introduced in Holmes (2001), Holmes and Fagan (2002) and 

McClure et al (2003) and expressed as follows, 

321

4

1
1 +++

=
−+ +++== ∑ tttt

j
jtt SSSSSR ,    

where tS   = spawer abundance at time t, 

Critical to the use of the diffusion approximation method is the lognormality of 

Rt.  The distribution of an estimate depends on the sampling method. The usual 

assumption is that abundances are lognormally distributed, i.e., ( ) ( )2,~ln σµNSt . The 

only way for ( )tRln  to be normally distributed from the above equation is for it to be the 

result of ( )∑
=

−+

4

1
1ln

j
jtS . The derivation of a lognormal distribution for Rt from the sum of 

spawner abundance is unclear. There is no well-defined distribution for ( )







∑

=
−+

4

1
1ln

j
jtS , 

and subsequently, the theoretical properties are unknown.  

McClure et al. (2003) provide the only stated arguments for the lognormality 

of ( )tRln . The bases of the arguments seem to arise from the presence or absence of 

significant outliers. Unbiased, random sampling of a target population can produce 

outliers regardless of the distribution. A lack of outliers does not constitute proof of 

normality. The most defensible arguments for normality arise from asymptotic (large 

sample) theory, which does not apply in this case. The other assumptions tested in 

McClure et al. (2003) are relevant to the analysis stochastic processes and can be violated 

even if the data are normally distributed. 

The stochastic exponential process is presented in Eq. 2, pg 2.7 as,  
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( )
0

pt
tN N e µ ε+= ,  where ( )2~ 0,p Normal tε σ . 

It is not clear in any manuscript or paper whether the spawner counts, tS  or running sum, 

tR  is substituted for tN ; however, all indications are that it is tS . 

 

3.) Independence between between τ+tR  and tR ,  the variance of 






 +

t

t

R
R τln and 

sources of error. 

Two of the issues of concern are the independence between τ+tR  and tR  and the 

bias in estimating process error when sampling variability is high. Variances expressed 

analytically are invaluable in assessing how different assumptions and processes 

contribute to overall variability. These relationships can be hidden in simulation studies. 

Presented below is a countering the argument for independence between τ+tR  and tR  

followed by two variance expressions for ( )tt RR τ+ln . The first variance estimator is an 

analytic expression for the regression method presented in McClure (2003).  The second 

estimator of 1ln t

t

RVar
R

+
  
  

  
 is a more general expression for the variance of a function 

of two random variables. The second expression is then modified for the special case of τ 

= 1 and independence among spawner counts to illustrate how the addition of error to 

spawner counts can affect overall variability. 

Independence between τ+tR  and tR  requires that each running sum is estimated 

from different spawner estimates and that the abundances, tS , are also pairwise 

independent, i.e., ( )ˆ ˆ, 0t i t jCov S Sτ+ + + =  for all i, j = 0, 1, 2,3.  When τ = 1, 2, or 3, the first 

condition of independent data does not hold. For example, when τ  = 1, then the values of 

τ+tR  and tR calculated as, 

       4321

3

0
111 ++++

=
−+++ +++== ∑ tttt

j
jtt SSSSSR  and,  
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321

3

0
1 +++

=
−+ +++== ∑ tttt

j
jtt SSSSSR  

Common to each R  is the sum 321 +++ ++ ttt SSS . Hence τ+tR and tR  are not statistically 

independent when τ = 1, 2, or 3. When τ = 4, then spawner counts must be pairwise 

independent. Independence among spawner estimates is not addressed. 

Estimation of the variance of ( )�ln λ , i.e., ( )runVar µ̂  is unclear in the manuscript, 

although it is stated as the estimated slope of a regression through the origin of 

� ln t

t

RVar
R

τ+
  
     

 versus τ for t = 1,2,3,…,k-3,  τ = 1,2,3,4. Based on descriptions in 

previous work, the least squares estimate of the slope, i.e., the variance of ( )�ln λ , can be 

expressed analytically as follows, 
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∑
, the empirical variance of 

( )tt RR τ+ln  across all t  for each τ = 1,2,3,4.  

The manuscript mentions estimating process error from 2ˆslpσ , yet is it unclear as to 

how the estimation process happens. Consider the analytical expression for the variance 

of ( )tt RR τ+ln , which can be written as follows 

  ( )( ) ( )( ) ( ) ( )( )ln ln ln 2 ln , lnt
t t t t

t

RVar Var R Var R Cov R R
R

τ
τ τ

+
+ +

  
= + −     

, 

In simulation studies, the observation error is added to the spawners. Expressed in terms 

of spawner abundance the variance is as follows, 
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 ( )( ) ( )( )1 2 3 1 2 3ln ln lnt
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( ) ( )( )1 2 3 1 2 32 ln , lnt t t t t t t tCov S S S S S S S Sτ τ τ τ+ + + + + + + + + +− + + + + + + , 

Assuming that tS  can be substituted into the stochastic exponential process 

( )
0

pt
tN N e µ ε+= , adding measurement error ( 2

mσ ) to the process error, and ignoring the 

covariance for simplification, the variance of  ( )tt RR τ+ln  can be expressed as,  
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where ( )( )2 2~ 0, p mNormal tε σ σ+ . As modeled in the above equation, measurement 

error is multiplicative, propagating through the time series. Alternatively, the 

measurement can be additive, expressed as, 
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where ( )2~ 0,m mNormal tε σ .   

Considering the above variance expressions, how are the measurement errors 

incorporated and process error estimated?  

4.) Parameter estimation 

Parameter estimation is not a trivial matter. Pages 2.18  - 2.19 of Final Report of 

the Technical Workshop on Population Trends and Extinction Analysis explicitly states, 

“One of the strengths of diffusion approximation methods is that the statistical 

distribution of the estimated parameters are known.”  Both frequentist and Bayesian 

methods rely on the likelihood, which require the data to be independent and identically 
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distributed from a well-defined distribution. If the distribution of the random variable, in 

this case ( )tRln , is not well defined then the properties of the parameter estimators will 

be unclear. (N.B. - It is not the parameters that have distributions but the estimators of the 

parameters.) 

Dennis et al. (1991) present maximum likelihood methods and resulting 

estimators for the parameters of the diffusion approximation method. The properties of 

these estimators, i.e., uniqueness, minimum variance, and unbiasedness, are sound. The 

reasons for not using these methods have been given in the manuscript and were based on 

simulations results where distributional assumptions that were most likely violated, 

leading the poor behavior of the estimators. Unfortunately, the properties of the 

distribution of Rt. are ill defined, leading to problems parameter estimation and 

quantifying uncertainty. Estimation of the mean, or ( )�log λ , can be robust to 

distributional assumptions because of the Central Limit Theorem. When ( )�log λ  is 

estimated using a Bayesian analysis the Central Limit Theorem no longer applies. 

Subsequently the resultant posterior distribution may more sensitive to distributional 

assumptions about tR .  

The estimation of the finite rate of increase is critical in assessing jeopardy. 

Although mentioned as a small part of the manuscript, four pages were devoted to the 

explanation and use of posterior distributions in decision theory, suggesting the use of 

Bayesian methods in the analysis. Estimation methods of the parameter and uncertainty 

must be scientifically sound, including methods and results that are falsifiable and 

repeatable. Arguments given for the use of Bayesian methods usually center on the ability 

to incorporate prior knowledge. Yet prior knowledge can take on many forms, such as 

values or limits of parameters taken from previous or similar studies, error structure, 

model processes that yield model specifications, or probabilistic distributions of the data. 

All of these are assumptions that can be incorporated into any analysis, and at times be 

tested for validity when using frequentist methods.  

The use of probabilistic statements in decision-making and the quantification of 

uncertainty are often cited as driving forces in behind the use of Bayesian methods. 



Written comments submitted by participants 3.22 

Kris Ryding 

However, hypothesis tests can be conducted under several management strategies to 

examine differences and aid decision-making and uncertainty surrounding parameter 

estimates are reflected in variance estimators.  

 Another reason given for the use of Bayesian methods is a result of the 

interpretation of confidence intervals. A common, and wrong, perception is that the true 

parameter estimate is equally likely anywhere within the interval, implying a probability 

associated with the true parameter value. This is not true. The parameter value has no 

associated probability; it is either in the interval or it is not. Intervals, estimators, and 

estimated variances are random quantities not the parameter. These are frequentist 

concepts, but then so is the confidence interval so its attributes are best discussed from 

that aspect.  

 Suggestions: 

1.) Resolve the distribution of the running sum, or choose a statistic whose 

distribution can be resolved. This will solve a variety of problems, including 

the estimation of process error. 

2.) Clarify how errors are added to the simulated data set. Do the simulations 

match how the errors are modeled? Analytic expressions for expected values, 

variances, and exactly how simulations are conducted would help. 

3.) Bayesian methods introduce parameters that are unnecessary in a frequentist 

analysis. At the minimum a sensitivity analysis should be conducted showing 

the effect of those parameters on results by, 

a. Estimating parameters and uncertainty with no prior distribution 

(maximum likelihood methods) and,  

b. Showing the changes in parameter estimates and uncertainty with 

different prior beliefs, and the meaning of the changes.  

Note that limiting parameter values can be done by algebraic manipulation. For 

example, if the belief is that ,  for a b b aλ< < > , the following expression can be 
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substituted for λ , ( )exp( )
1 exp( )

b a aθλ
θ

= − +
+

. The likelihood would be maximized 

for values of θ , which can take on any value. Estimates and variances of λ  can 

be calculated using a Taylor series expansion. 

4.) Part of the analysis should examine if results are sensitive to prior belief 

(assumptions) and the implications in assessing jeopardy. Furthermore, the 

reasoning behind the selection of prior distributions should be clear. 
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EXECUTIVE SUMMARY 
 

The white paper by Holmes is an excellent overview of the rationale supporting 
the use of the Dennis- Holmes parameterization of the Diffusion Approximation (DA) for 
estimating population trend. The white paper is both statistically sound and extremely 
well written. In the white paper, Holmes makes three strong claims: 1) that the DA 
method provides robust estimates that allow the separation of process and non-process 
error, 2) that the method allows the accurate calculation of metrics of (quasi) extinction 
risk and 3) that these methods have been extensively studied and validated with West 
Coast salmon time series. We agree with these claims. The white paper is a compelling 
review of the literature and rationale.  

A total of six presentations were made by scientists from the Northwest Fisheries 
Science Center, the Columbia River Inter-tribal Fish Commission, Hinrichsen 
Environmental Services, and Paulsen Environmental Research. During the presentations 
and the discussion that followed, several criticisms were made of the methodology 
outlined in the white paper and alternatives were suggested. Participants questioned the 
relevance of extinction metrics offered by the DA approach, as well as model 
assumptions of stationarity of population growth rates and variance, with specific 
reference to large-scale shifts in the ocean regime, the hydrosystem, introduction of 
hatchery fish, and changes in harvest. Issues of data quality and appropriate methods for 
smoothing and pooling data were also addressed. 

Several alternative methods and modifications to DA were proposed, including 
the use of a Kalman filter, development of new indices of population change, and 
modifications to traditional stock-recruitment models. The white paper and submitted 
manuscript by Holmes address most of these alternatives. Participants in the discussion 
also called for improved collection of monitoring data and continued work validating the 
DA methods against high-quality data.  

Issues with the use of DA and the Dennis-Holmes parameterization for salmon 
management include data quality and estimation of confidence intervals, autocorrelation 
and stationarity effects on appropriate time windows for assessment, the use of aggregate 
predictions, and the choice of risk metrics. Our recommendations for future research 
include an analysis of alternative methods (particularly Dennis Holmes vs. Kalman filter) 
and risk metrics on high quality, real time series. Recommendations for management 
applications are also offered, including the use of a “moving window” to estimate 
population trends and variance. It is also important for managers to recognize the 
importance, and usefulness, of a robust risk metric and analysis to set thresholds for a 
wide range of populations and data sets. 

Our conclusions are that the DA approach has been rigorously evaluated, has 
undergone better scientific peer review than any current methods used for threatened 
species assessment, and provides the best available approach for objectively estimating 
and comparing population status for salmonids. Although some further work may still be 
helpful, these methods are very strong and should be accepted as the current standard. 
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INTRODUCTION 
 

This review consists of five parts. The first part (Part I) is an academic peer 
review of the white paper by Holmes. This review includes comments about the scientific 
ideas presented in the manuscript as well as suggestions for improvement. Part II of this 
report presents capsule summaries of the talks presented during the workshop and a brief 
review of the discussion that followed. Our summaries are not complete reviews of the 
talks. Instead, we highlight the key issues presented as they pertain to the white paper by 
Holmes and the larger question about estimating population status and trend. The 
discussion, while informal, was productive and focused on the technical concerns with 
estimating population dynamics. As a result, we felt that a brief summary of the 
discussion was informative, and provides the background for our synthesis of alternative 
methods (Part III) and issues (Part IV). This synthesis draws on published literature, 
information presented and discussed at the Workshop, and two commentaries received 
from Workshop attendees (Paulsen and Hinrichsen). The final section of our report (Part 
V) provides our recommendations for changes to methods used in the Biological 
Opinion, application to management, and directions future research.  

 

PART I. PEER REVIEW OF HOLMES (2003)  
WHITE PAPER 

 
The white paper by Holmes is an excellent overview of the rationale supporting 

the use of the Dennis- Holmes parameterization of the Diffusion Approximation (DA) for 
estimating population trend. The white paper is both statistically sound and extremely 
well written. As a result, it is compelling treatment of the material. The white paper 
covers an enormous amount of material and we discuss the issues presented in the white 
paper in five (5) major sections. We discuss each of these sections in turn. 

Table 1: Major sections of the white paper by Holmes. Each section is discussed 
in this review in the order presented in the white paper. 

Section Description MS 
Page(s) 

Background Regulatory and legal history that led to the development of the white 
paper and the subsequent workshop as part of the remanded BiOp. 1 

Introduction Introduction to population trend estimation in the face of large 
amounts of variability and uncertainty. Includes citations that 
support the methods. 

2-5 

Diffusion 
Approximation 

A coherent overview of the application of the diffusion 
approximation method including parameter estimation, risk metrics, 
validation studies, and applications to salmon. 

5-13 

Comparison of DA 
to Other Estimators 

Explores the performance of the DA methods compared to other 
methods including log recruits through time, geometric mean, smolt 
to adult ratio and others. 

13-16 

Extended Discussion A discussion of important issues including choice of time frame, 
utility of confidence intervals, potential application of Bayesian 
methods, and quasi-extinction thresholds. 

17-22 
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Background: 

Holmes summarizes the history of the Federal Columbia River Power System 
(FCRPS) Biological Opinion (BiOp). The 2000 BiOp was based on estimating the 
probability of extinction at 24 and 100 years, as well as the probability that population 
growth rates were positive. The BiOp assumed that methods for estimating growth rates 
would advance and that the most appropriate method(s) would be chosen from the peer-
reviewed literature. As part of the remand process, a critical review of methods for 
estimating population growth rate was required. 

 
Introduction: 

The white paper reviews research since 2000 and focuses on papers by Holmes, 
Fagan and McClure. These papers establish the utility of the DA method as well as 
present results of cross-validation work with salmon and other endangered species.  

The introduction also provides a hypothetical example of a declining population 
to motivate the need for careful estimation. This simple example is important and can be 
improved with two simple modifications. Figure 1 presents three trajectories from a 
declining population.  It is a nice motivating example but could be improved with a 
second simulation of a declining population with autocorrelated deviations in year-year 
population growth. This would provide a visualization more relevant to salmon where we 
expect boom-bust dynamics and/or the potential for long-term runs of good or bad years. 

In Figure 2, Holmes presents growth rate estimates for several methods including 
the ML, slope and runsum methods (ML and “slope” are not clearly distinguished). The 
example would benefit from several minor changes. First, it would be helpful to visualize 
the raw data before showing the population estimates. Second, it would be helpful to 
show how the different estimators converge on the true population value as the data series 
increases in length. In year 50, we are not constrained to using only the most recent 20 
years and this is not reflected in the example. Finally, this example was simulated using 
uncorrelated errors (high-frequency noise) and an illustration of the same comparison for 
data with runs of good and bad years (as suggested for Figure 1) might be useful. 

 
Diffusion Approximation Methods: 

Holmes does a nice job summarizing the history of, and theoretical basis for, the 
DA method. She refers to the classic literature particularly books and papers by Caswell, 
Tuljapurkar, Dennis, Morris, and Holmes. Direct comparisons with age-structured 
transition matrices are overstated, however; while both DA and matrix methods results in 
an exponential rate of population increase, the dominant eigenvalue of a transition matrix 
is the result of age- or stage-specific processes, rather than a simple statistical measure of 
observation data. Nevertheless, the use of exponential growth rates as indices for 
population health and potential for recovery have a well-established place in management 
applications. The introduction is followed by a very clear explanation of the methods 
used to estimate the parameters in datasets with significant amounts of process and non-
process error. Holmes then asserts (with appropriate citations) that the running sum and 
slope methods are optimal for estimating µ and σ2, respectively.  
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This is followed by a discussion of several key issues in the application of 
population growth estimates to conservation of salmon: uncertainty about the role of 
reproduction by hatchery fish, cycles in ocean productivity that affect survival rates, and 
the use of µ and σ2 to create risk metrics. This last issue is fundamental and probably 
deserves a little more explanation. In particular the relationship between µ, λi and λhat 
(Equation 7 - error?) should be described more carefully and its relationship to the 
geometric mean be made explicit.   

The validation studies of DA for salmon populations are very thorough. The work 
relies on simulated data from population models of steelhead and chinook as presented in 
Holmes (2004). The concordance between the DA estimated parameters and the 
simulated data is extremely high. Clearly the DA method is an accurate approximation 
under these conditions. However, there is still uncertainty about how this method 
performs with high levels of autocorrelation. Neither the simulated data presented in 
Holmes (2004) nor the bootstrapping method in Hinrichsen (2002) were designed to test 
the accuracy of estimation given extended runs of good and bad years. Although there is 
debate as to how credible the evidence is for regime shifts and long runs, the simulation 
method could be extended to test the sensitivity of the method under these conditions. 
Autocorrelation has been addressed more thoroughly in new simulations added to 
Holmes (2004), and should be highlighted; under most conditions, DA performs well. 
The assessment “window”, or number of years used to estimate µ and σ2, will affect the 
performance of the model. 

The results of the validation study might be strengthened by using the simulated 
data to validate other metrics like the geometric mean and the regression method. This 
recommendation is a tentative one since the results are well understood from previous 
published work. The main benefit would be to illustrate the performance of these metrics 
under comparable conditions.  

The match between observed and predicted values (Figure 6) provides a 
compelling demonstration that the DA technique is accurate. The aggregate mean and 
variance from the DA technique provide a nearly perfect match to the simulated data. It is 
important to reiterate that this does not mean that the prediction in any single application 
(stock or stream segment) will be precise. The degrees of freedom of the t distribution are 
difficult to understand. The paper should explain why 20 years of data leads to an 
expected t distribution with ~3 degrees of freedom. This is particularly important since t 
distributions with low degrees of freedom have very heavy tails and thus there is still 
substantial uncertainty associated with estimation. 

In the final paragraphs about the DA method, Holmes addresses the evidence for 
strings of good and bad years and their impact on estimation. This idea is very important. 
The simplifying assumptions underlying Figure 7 seem restrictive. Averaging 200 stocks 
of chinook and steelhead stocks and looking at a trace of their average does not seem 
adequate. The rapid transition of the mean of 200 stocks moving from -0.5 to 0.5 in a few 
years may be evidence of non-stationarity.  
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Comparison of Methods: 

Holmes details several proposed methods for estimating population change 
including log recruits per spawner, SARs, 8-year geometric means of return rate, simple 
regression of log natural abundance through time, and residuals from a stock/recruit 
relationship. The relative merits of each technique are presented in a clear and 
straightforward manner. For example, regression of log abundance through time, log 
recruits per spawner and 8-year geometric mean can be used to estimate µ or λ and thus 
are analogous to the DA method. Holmes asserts these methods are not better than the 
DA and can be much worse because they may require more data, are often more variable, 
and do not discriminate between process and non-process error.  

In the latter part of this section, Holmes briefly discusses the use of stochastic 
Leslie matrices (Hinrichsen 2002) and Kalman filtering (Lindley 2003) as alternative 
methods. Both of these methods have some merit and should be explored in more detail. 
Our expectation is that neither will prove superior to the DA approximation, but that they 
may be comparable (at least under some conditions). There is no reason to expect one 
approach to be uniformly most powerful under all conditions and a pluralistic approach is 
justified until more comparisons have been made. 

Holmes concludes this comparison with three very strong and broad claims.  

• The DA method is optimal (our wording, not hers) because it provides 
robust estimates that allow the separation of process and non-process 
error.  

• DA provides accurate estimates of process error that allow the accurate 
calculation of metrics of (quasi) extinction risk. 

• The methods outlined for estimating λ and extinction methods have been 
extensively studies and validated with West Coast salmon time series. 

We agree with these claims. The white paper is a compelling review of the 
literature and rationale. Although some further work may still be helpful, these methods 
are very strong and should be accepted as the current standard. 

 

Extended Discussion 
Following the review of the DA approximation and other estimators, Holmes 

moves into a more speculative discussion of uncertainty. She asserts that decision-making 
will be improved by examining the likelihood functions (ML) or the posterior probability 
distributions (Bayesian) rather than point estimates and confidence intervals. This work 
builds on an increasing literature base about decision making, in general, and Bayesian 
statistics in particular. In Figures 11 and 12, Holmes points out that informative priors 
can lead to substantial improvements (increased precision) in risk metrics.  

The white paper does not discuss how controversies about the prior distribution 
would affect this approach. Holmes (2004) provides a more complete treatment of the 
importance of priors in Bayesian analyses. In particular, Figures 8 and 9 show the 
relationship between the prior and posterior distribution. In some cases (µ, λ) the results 
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are robust to the choice of prior distribution. In other cases (σ2) the choice of priors 
influences the results quite dramatically.  

The white paper ends with a discussion of quasi-extinction thresholds. Holmes 
refers to a large body of literature that supports the notion that risk should be evaluated 
relative to a quasi-extinction threshold set much greater than N=1. Although there is 
uncertainty about how to set such a threshold, there are compelling reasons to do so. Both 
the empirical data and the estimation procedures become unreliable as populations 
become very, very small due to a variety of processes including Allee effects, 
demographic stochasticity, and increased (relative) measurement error. We strongly agree 
with Holmes rationale for establishing metrics that are related to relative declines (say 
90%) or quasi-extinction thresholds. 

 

 

PART II. SUMMARY OF WORKSHOP 
 
Eli Holmes, Northwest Fisheries Science Center 

The workshop began with a presentation titled “Estimation and calculation of 
risk metrics for stochastic population processes.” In the presentation, Holmes 
described the work summarized in the white paper. She began the talk discussing the 
challenges in estimating growth rates from stochastic matrix models. She argued that 
diffusion approximations require fewer parameters and relied on data that was generally 
available.  

She made the case that cross-validation studies were the most appropriate way to 
establish the accuracy of the DH methods. Her presentation drew heavily from her 
excellent recent publications (Holmes and Fagan 2002, Holmes 2004). Her presentation 
reiterated the claims in her published works that demonstrate that the DA method and the 
parameterizations used to estimate parameters were accurate. She concluded with a bold 
statement that the science in the 2000 BiOp is justified. 

In the final minutes of her talk, she introduced the ideas on expressing uncertainty 
contained in the final pages of the white paper. She advocates moving away from point 
estimates and toward expressing risk using likelihood functions or Bayesian posterior 
probability distributions. 

 

John Payne, Northwest Fisheries Science Center 
Payne followed with a presentation titled “The flip side of extinction: when can 

a population be de-listed.” In the presentation, Payne presents several alternatives to the 
DH approximation outlined by Holmes. Initially, he discussed the relationship between 
population size, intrinsic productivity, and extinction risk. 

He discussed the utility of stock-recruitment patterns as potential predictors of 
population dynamic. In doing so, he fit alternative models (Ricker, Hockey Stick, 
Constant Recruitment, etc) to several salmon datasets. Model selection using AIC 
indicated that the data were too variable to reject the notion of constant recruitment in 
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favor of more biologically meaningful models. This exercise underscores the tremendous 
variability in salmon time series. 

He then proposed that potential for population growth (Population Change 
Criteria) could be useful in the absence of a good estimate of λ. This is an interesting 
idea, but one with several limitations that make its application to salmon data very 
dangerous because it sets fixed targets for recovery. He concluded that the data available 
should drive the approach used. 

At the end of his talk, he described the software that he has developed (with 
colleagues). The software, currently nicknamed SPAZ, is a JAVA simulation 
environment that allows the simulation and/or estimation of population growth rates. The 
software will implement the algorithms currently proposed in the white paper and 
Holmes (2004). 

 

Saang-Yoon Hyun, Columbia River Inter-Tribal Fish Commission 
Hyun’s talk titled “Risk metrics to Spring/Summer Chinook Salmon and 

Steelhead in the Snake River basin” focused on the estimation of population dynamics 
for different populations within an ESU. The models presented were primarily 
modifications of DA. The talk included a discussion of criteria for “excessive extinction” 
although this concept was not clearly defined. The talk also reviewed the process of risk 
estimation using the approaches outlined in McClure et al. and Holmes. The data 
presented was derived from data on escapement, harvest, and spawning. Hyun derived an 
index of abundance (I) as a function of annual escapement and harvest data. This index 
was used as a surrogate for population size in the development of risk metrics for 31 
Chinook and 23 Steelhead populations.  

Hyun made the point that extinction estimates should include three quantities, the 
long run mean, µ, the variance, σ2, and the current population size, N. He suggested using 
ratio estimators of the functional form: 
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where PSR is the population size ratio, also referred to as “population size 
resilience”, the I values are the abundance values derived from available indices of 
abundance (escapement, spawning, and harvest data) and N values are the true 
(unobserved) population sizes. This assumes a constant relationship between the index 
and N, a common issue for many assessment models. The general idea behind this simple 
model is that a population can be healthy if a current population index is equal to or 
greater than the same index measured over a series of years prior to dam construction.  
The method relies on a point estimate (Icurrent) which may not be indicative of current 
population health, due to stochasticity. 

Ultimately, he proposed that extinction metrics be based on the joint distribution 
of µ (log(λ)) and the PSR. Specifically, he presented the idea that: 
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It must be noted that this formula can only be true if the two events { Pr(µ<0) and 
Pr(PSR<1) }are independent. Logically, these two quantities cannot be independent. In 
fact the data presented by Hyun show that the two quantities are strongly correlated. This 
makes sense since observed population declines (PSR<1) must be associated with 
negative growth rates (µ<0). 

Despite our concern over some of the methods proposed by Hyun, he argued 
eloquently that Bayesian methods are difficult to interpret when the posterior 
distributions are too flat. Finally, he reiterated the idea that alternative methods may still 
be useful and that rigorous comparisons between approaches can be illuminating. 

 

Rich Hinrichsen, Hinrichsen Environmental Services 
Hinrichsen’s talk titled “State space approaches to estimating population 

growth rates” contained three distinct sections. The first section discussed the use of 
stochastic Leslie matrices to estimate population growth rates. This summarized work 
published by Hinrichsen in 2002 in the CJFAS. The second section of the talk focused on 
the utility of the Kalman filter. In the third section, he discussed several ideas including 
stock-specific growth rates and evidence for non-stationarity.  

In the first portion of his talk, Hinrichsen reviewed the material published in his 
2002 paper. He argues that the Dennis-Holmes method is not superior to an alternative 
approach based on resampling stochastic Leslie matrices. He argues the stochastic Leslie 
approach is superior to DH when measurement error is small. The argument appears to 
boil down to a trade-off between bias and variance. The stochastic Leslie matrix approach 
is not always unbiased. As measurement error increases, bias increases. The DH method 
is unbiased regardless of measurement error. On the other hand, the stochastic Leslie 
matrix approach has slightly smaller variance when measurement error is small.  

Hinrichsen then transitioned into a discussion of the Kalman filter. His work 
borrowed heavily from the recent paper by Lindley in Ecological Applications. He 
concluded that the Kalman filter may be a useful tool that should be explored further. 

In the final segment of his talk, Hinrichsen explored the need for more complex 
models that include stock-specific growth rates, correlated process error, and non-
stationarity in salmon time series. He argued that analysis of multiple stocks provides 
evidence for stock-specific growth rates. He also presented evidence that process errors 
among stocks were strongly positively correlated. Finally, he argued that there was 
compelling evidence of an ocean regime shift in 1977 and perhaps again in 1998. He 
concludes that these shifts are important perturbations to the long-term time series and 
thus violate the implicit assumption of stationarity. 

 

Charlie Paulsen, Paulsen Environmental Research Ltd. 
Paulsen presented the next talk titled “λ estimation and prediction: problems 

and (possible) solutions.” This talk, while amusing and thought provoking, led to some 
of the most contentious debate. His talk was based on several clearly stated premises. 
First, that estimation is inherently difficult (unreliable) because of measurement and 
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process error. Second, that salmon stocks are extremely variable. Third, that regime shifts 
are real (with the implication that estimates that ignore this are unreliable). 

Early in his talk, Paulsen introduced the stock market as an analogy to the 
problem of predicting salmon growth rates. He argues that salmon populations, like the 
stocks, are inherently unpredictable and thus any long-term predictions are simply fiction. 
In specific, he asked the audience to predict the stock value of IBM and GM 100 years 
out. The analogy, while seductive, is flawed. A more appropriate analogy might be to 
compare a start-up company to IBM. Clearly there are strong, empirically-based metrics 
that show that a start-up has a much higher extinction risk. In addition, it is dangerous to 
compare the (relatively) simple life-history of salmon to a multinational company. 
Salmon shareholders cannot vote to divest from the Columbia river and decide to 
manufacture electric cars instead. 

Paulsen followed the analogy with a discussion about short-term and long-term 
prediction success. He argued that many recent papers have concluded that PVA models 
are unable to predict extinction. In another engaging quip, he stated that statistics (like 
those in Holmes) are neat, but beside the point. Instead, he suggests that managers focus 
exclusively on short-term predictions, be pluralistic, and always communicate 
uncertainty.  

 
Earl Weber, Columbia River Inter-Tribal Fish Commission 

The final presentation was titled “A variable slope stock-recruitment function 
for nonstationary data.” Weber began his presentation with a stock recruitment graph 
from Marsh Creek Idaho. He suggested that the relationship was dominated by three 
clusters of points from the different time periods (50s and 60s, 70s, 80s and 90s). He 
proposed adding a 3rd parameter, c, to the standard Ricker function where: 

R = caSe-cbS 
This modification deforms the Ricker curve and “stretches” it further across the X axis. 
The approach is predicated on the idea that the stock-recruitment function is not 
stationary and that large-scale changes due to ocean regime shifts, damns etc mediate the 
stock-recruitment relationship.  

Weber’s presentation was another reminder that salmon populations are impacted 
by multiple factors and that overly simplistic models may not capture important 
biological variation. On the other hand, the modified Ricker function seems somewhat 
arbitrary. It is also unclear how the results from this function could be used to calculate µ, 
σ2, and extinction risks. 
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Summary of the Discussion 

The discussion that followed the presentations was lively and interesting. Several 
topics were brought up repeatedly. 

• Non-stationarity:  several participants in the workshop suggested that salmon 
populations were strongly impacted by large-scale shifts in the ocean regime, 
the hydrosystem, introduction of hatchery fish, and changes in harvest. There 
was concern expressed that these processes are largely ignored by “pure 
statistical” methods that ignore biologically relevant data. 

• Alternative methodologies:  several alternative methodologies were 
discussed including the use of a Kalman filter as an alternative to the DA 
method. There was also interest in seeing population change estimates lagged 
over a range of time periods. This might provide some insight into multiyear 
excursions of µi from an ensemble mean.  

• Improved data collection:  improved modeling of population change likely 
requires additional general monitoring data. There were calls for better data on 
the role of hatchery fish, evidence of density dependent survivorship, and 
stock specific harvest rates. It is likely that more intense data collection is 
needed in order to identify minimum data needs for long-term monitoring.  

• More complete validation studies:  there was some dissatisfaction expressed 
with the validation of DA methods proposed in the BiOp. In particular, the 
stability of the methods to violation of important assumptions (e.g. 
stationarity, hatchery fish etc) was questioned. It is possible that some limited 
additional modeling is appropriate to confirm the applicability of the current 
methodology. 

These discussion points provide directions for future research but in our opinion they did 
not refute the method outlined in the Holmes white paper. Although methods will 
undoubtedly continue to evolve, the DA approximation should be adopted as the de facto 
gold standard. 

 

 

PART III. REVIEW OF ALTERNATIVE METHODS 
 

Alternative methods and modifications to the DH diffusion approximation fall 
into four categories: trend estimator techniques (age-structured model, regression, stock 
recruit, geomean), data smoothing techniques to separate observation and process error 
(Kalman filter, running sums and slope), the importance of the time window for 
assessment, and ways to characterize express uncertainty. We discuss each of these 
alternatives in the following sections. 
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Trend Estimator Techniques 
The Holmes white paper provides a good discussion of alternative methods to 

calculate trends and trend variance. However, all trends for salmon populations require 
analysis of multiple data sets (see Data Quality, below), and more attention should be 
given to the relative effects of pooling data in different ways. Data pooling will have an 
impact on 95% confidence interval estimation for µ and σ2. 

Uncertainty in the estimates of µ and σ2 is important to appreciate. CIs are largely 
determined by the number of years in the assessment, providing a measure of reliability 
that promotes a) improvements in data collection and b) long term monitoring. In his 
review comments, Hinrichsen points out that the current CI estimates for the stochastic 
growth rate of a population are based on separate calculations for µ and σ2. This leads to 
very wide estimates, effectively counting the uncertainty twice. Hinrichsen suggests that 
this is inefficient, and provides recommendations for pooling and smoothing data.  

Regardless of methods used, the confidence intervals for DA metrics and 
extinction risk should account for uncertainty within annual estimates, not just year-to-
year variability. See Data Uncertainty in Issues, below. 

Adult to adult survivorship or stock recruit relationships, where an entire cohort is 
measured, requires an assessment lag (all spawners from a cohort must be accounted for) 
but could be more informative to help interpret trends and correlations (Weber 
presentation). However, data requirements for good age structure estimates are high. Like 
population trends and variance, age structure is not stationary. The DH approximation 
utilizes a stationary age distribution, but does not depend heavily on it; any assessment 
method that relied on recruits per spawner would require precise assessment of every 
cohort, every year. Such information is valuable for detecting shifts in survival rates, as 
might be expected with changing ocean conditions, which could lead to changes in 
population growth. Despite these important benefits, a recruits per spawner approach to 
determine population status across an ESU fails as a management model because of the 
intensive monitoring required to make accurate estimates. Also, projecting population 
status in the future with recruits per spawner methods has the same problems of 
stationarity assumptions as the DH methods, but with the added cost of uncertainty in 
parameter estimates. 

 
Data Smoothing 

The DH method provides a stable estimate of µ in the face of both process and 
non-process error. Hinrichsen proposed using a Kalman filter as an alternative 
(Hinrichsen comments, Lindley 2003). One potential advantage ascribed to the Kalman 
filter is that the level of smoothing will be dependent on the data. When estimates track 
the observations closely, the level of smoothing is low, and when estimates fail to track 
the observations, the level of smoothing is high. Hinrichsen also argues that 
nonstationarity can be easily included using the Kalman filter. He proposes a step 
function be used in the initial characterization of the state equation (Hinrichsen 
comments). Because this approach yields a variety of models, Hinrichsen recommends 
that AIC scores be used to compare models.  
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These ideas are attractive since they address several of the concerns expressed by 
participants in the workshop. The very flexibility proposed by Hinrichsen also poses 
significant problems. First, smoothers (in general) are often very sensitive to choices 
made about the window size and tension used. It is not clear how this approach would be 
standardized across stocks and years. Second, creating more flexible ad hoc models (i.e. 
allowing µ to vary as a step function) introduces new sources of potential error and or 
bias. Adoption of such an approach would require the kind of large-scale data and 
simulation modeling that has been performed for the DH method outlined in the white 
paper. The arguments presented by Hinrichsen deserve further consideration, but it is 
premature to advocate the use of the Kalman filter. 

 
Time Window 

Whether using the current DH approach or the Kalman filter advocated by 
Hinrichsen, the assumption of stationarity and the length of the window will be very 
important. These two concerns are intertwined because of the potential tradeoff between 
variance and bias (Figure 1A). As the window length increases, the variance in the 
estimator decreases (Solid Line). If the system is not stationary, the estimator may (or 
may not) become increasingly biased (Dashed lines a, b and c). The optimal window size 
depends critically on the rate at which potential bias grows. In other words, the optimal 
window size depends on the rate at which older data becomes misleading. If the system is 
stationary, then the full data series should be used, regardless of length (Figure 1B, panel 
I). However, if the system has 2 stable states (good versus bad conditions based on the 
PDO) as advocated by some, the window size should be constrained (Figure 1B, panel II) 

 

     A)                                                                 B) 

 

 

 

 

 

 

 

 

Figure 1: A) Conceptual relationship between window size and error. Variance 
should decrease monotonically with increasing length. Potential bias is 
introduced if the conditions change. The rate at which conditions change is 
represented by the 3 dashed lines (a - rapid change, b - modest change, c - slow 
change). B) Representation of two strategies (I - accumulating data so window 
size increases, II – using a moving window based on some optimal window size.  
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PART IV. ISSUES 
 

This part of our report reviews a number of issues regarding the appropriateness 
of the DH method and resulting metrics for assessment of population status. We have 
identified these particular issues through our reviews of provided materials, peer-
reviewed literature, and comments (verbal and written) by workshop attendees. At the 
end of each issue review, we provide our own assessment of whether the issue has been 
adequately addressed in peer reviewed publications (methods) or in the BiOp itself 
(application), based on McClure et al. (2003). 

 

Data Quality and Expressing Uncertainty 
Many workshop participants expressed concerns about the choice of metrics and 

the need to express uncertainty. The written comments by Paulsen, in particular, reflect 
these concerns.  

The white paper by Holmes includes an extended discussion about extinction 
metrics and expressing uncertainty that arises from the number of years in an assessment. 
There is some disagreement between Holmes and Hinrichsen about the appropriate 
degrees of freedom, depending on how data are smoothed – the methods espoused by 
Holmes need clarification.  

Data from multiple sources are used in all assessments of spawner abundance, and 
are often indices that rely on a range of methods to extrapolate to population size. 
Sources of uncertainty may be easy to identify, such as redd count errors, or more subtle, 
such as biases that accumulate from the pooling of several sources of information. 
Holmes and co-authors have done a good job of addressing between year variability due 
to observation error, and there are new methods proposed to refine this more 
satisfactorily (Kalman filter approaches, above). However, all of the methods presented 
assume normally or log-normally distributed measurement error, which may be violated 
in abundance data. Measurement error is not random. Some stream segments are easy to 
monitor, others more difficult. Estimates may improve through time with better methods, 
or decrease due to restricted budgets. A project is underway to document methods used to 
estimate abundance across all West coast stocks (WDFW), and future efforts may attempt 
standardize count data or extrapolation methods.  

In the white paper, Holmes discusses the potential for developing Bayesian 
distributions of µ and describes z-transform vs. Bayesian approaches. We suggest that 
there may be a narrow window for the usefulness of Bayesian analysis to estimate µ 
distributions or confidence limits. When data are very good, i.e., long time series with 
relatively small within year error, there may be no need for a Bayesian approach. When 
data are sparse, the posterior distributions from such an analysis will be strongly affected 
by priors. Priors are likely to be contentious and not very quantifiable, with different. 
priors on process vs. observation error. This issue should be explored more thoroughly, 
with real time series and non-normally distributed measurement error. 

Lindley (2003) found that very high levels of measurement errors in simulated 
data may lead to biases in DH (underestimate process errors), but substantial differences 
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between methods only occurred when measurement error greatly exceeded process error. 
The real time series examples given by Lindley for sea otter and grizzly are not really 
comparable to salmon, due to differences in life history and apparently low process error 
in the data for these species (more overlapping generations?). Holmes (2004) addresses 
measurement error with simulations and shows very little effect on µ but more on σ2. 

The methods used to pool or massage data to create time series for the DH model 
are not specified in McClure et al. (2003). Data assessment should be more transparent. 
Pooling could lead to accumulation of bias due to correlation of errors among data 
sources. Also, by making data pooling methods an explicit part of the assessment process, 
the management agency can show how better estimates of population size, or longer time 
series, can narrow the confidence limits of µ. This could provide incentive for improved 
data collection if method accounted for uncertainty in the data. 

Has this issue been addressed sufficiently? No. This is an ongoing area of research and 
NMFS should continue to explore and evaluate methods.  
 
Autocorrelation, Stationarity and Biological Realism 

The diffusion approximation of population trend and extinction risk includes very 
little biology. It is unappealing to rely on a model that treats variance as a random 
process, rather than a mechanistic one that is the result of biological processes. Surely 
population dynamics and extinction risk are rooted in biology – underlying relationships 
between spawners and recruits, changes in abundance and population growth due to 
external forcing on vital rates, and so on. These relationships and stressors should result 
in cohort dynamics that produce autocorrelation in time series of abundance. 
Nevertheless, the diffusion approximation works, whether because stochastic processes 
truly randomize abundance from year to year or cohort to cohort (4 year running sum 
estimates), or because our ability to count salmon is so compromised by observation error 
that patterns due to biological processes are undetectable.  

Holmes (2001) suggested the running sum transformation in part to account for 
autocorrelation due to cohort dynamics.  The effect of autocorrelation on µ, σ2 and 
extinction risk metrics has not been examined explicitly in validation studies, and could 
be done with simulated data sets and a range of lags. Autocorrelation in the time series 
data has been addressed to some extent by using age-structured models to generate “true” 
population trajectories, but could be investigated further to explore long term cycles. The 
sensitivity of model results to autocorrelation will be strongly dependent on the true 
variance of the time series. If there is a potential for bias due to autocorrelation, time 
series could be formally tested and transformed appropriately.  

The assumption of stationarity in µ and σ over long time intervals is an important 
criticism of DH. There are two primary sources of concern: the relevance of a 100 year 
time frame for prediction of extinction risk, and the potential for long time scale bias or 
cycling of survival rates due to management, climate, and ocean productivity. Relevancy 
of predictions that assume constant rates is an interesting philosophical debate (Paulsen), 
but all model projections require assumptions about the continuation of current 
conditions. Caswell (2001) provides a clear distinction between prediction and 
projection; in order to make relevant comparisons among time periods and stocks, we use 
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models to project potential outcomes given that conditions (trend and variance) remain 
generally constant. 

Ocean cycling effects on west coast salmon stocks are uncertain and undetectable 
when stocks are considered in aggregate. However, it is premature to dismiss the 
potential for long-term changes in vital rates due to ocean conditions and their effect on 
abundance and trends. Francis and Hare (1994) have shown step functions in abundance 
of spawners in Alaska (pink and sockeye stocks) that correspond with shifts in climate. 
There is less evidence for such abrupt changes in west coast stocks, possibly due to 
hatchery influence and differences in life history traits. Relative effects of ocean 
productivity on population numbers will likely be ESU or stock-specific and depend on 
life history (number of years spent in the estuary, nearshore and offshore), harvest levels, 
and hatchery input. Some of these analyses have been done by Payne and McElhany with 
simulated data (in prep), but no consistent biases in error of the DH estimator have been 
identified. Holmes (2004) provides several simulation results that show robustness of the 
DH approximation to cycles in abundance and correlation among populations. 

Population trends change in response to management, harvest, ocean conditions, 
and new stressors, such as disease or exotic species. A trend measured over a short time 
period may be biased, particularly if long-period cycles in abundance occur. The upshot 
of this is that µ should not be set in stone, but updated frequently. The minimum time 
window for assessment should be based on biology – for example, 3 generations (15 
years) – or the periodicity of ocean cycles, if it can be reliably determined. Time series or 
assessment windows of shorter length are not to be excluded, but are less reliable 
indicators of population status. For example, calculations of µ or extinction risk from 
recent data may, indeed, include only years of decline, but the fact remains that many of 
those populations were declining to extinction.  

Has this issue been addressed sufficiently? Yes. We believe the method has been 
adequately tested. 
 
Aggregate Predictions 

Most of the analyses presented in papers by Holmes and Fagan represent 
validations of the DH model based on aggregations of time series. Predictions are 
unbiased, but the spread is often wide; this means that, on average, the DH method is an 
excellent predictor of average behavior but may not be satisfactory for estimation of a 
single stock. This is illustrated very well by the confidence intervals given for individual 
stocks in McClure et al. (2003). Unfortunately, the sample sizes for each time series were 
not provided, which would have made uncertainty in model predictions much easier to 
judge.  

High variability is the rule, rather than the exception, in most time series of 
animal populations (Fieberg and Ellner 2000). In his commentary, Paulsen points out that 
The stakes may be very high on a population by population basis. With the DH 
approximation, we’re right most of the time - is that good enough? Probably not for 
managers working at small spatial scales. However, this is not the scale at which NMFS, 
nor the Endangered Species Act, is operating. 

Has this issue been addressed sufficiently? Not to manager’s satisfaction. 
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Choice of Metrics for Assessing Population Status 

The Dennis-Holmes diffusion approximation provides estimates of trend, variance 
and extinction probability due to stochastic variability. In comments provided to the 
review panel, Hinrichsen questions whether the probability of extinction in 100 years is 
the most appropriate metric for comparing the status of threatened salmonid populations. 
He argues that other measures provided by DH, specifically the average trend in the 
population through time, may be a more reliable metric. The arbitrary nature of “5% 
chance of extinction in 100 years”, and the implausible assumption that a trend of any 
sort would be sustained for such as long time period, are concerns expressed by others 
attending the review session. Hinrichsen also expresses concern that extinction risk 
results can be strongly dependent on the choice of the quasi-extinction threshold, as 
found by Holmes (2001), Payne and McElhany (ref) and others.  

The mean and 95% confidence intervals for µ (or its discrete counterpart, λ) 
could, indeed, be used as assessment metrics, and would eliminate the need to agree on 3 
arbitrary variables (QET, time horizon, acceptable risk level). Hinrichsen suggests 
improved methods for calculating estimates and CIs, utilizing results from the DH 
analysis and the length of the time series. However, it may be equally difficult to agree on 
an acceptably high λ. Under most stochastic conditions, λ must be considerably greater 
than 1 to maintain a population. Confidence intervals around λ or µ are likely to be quite 
large for salmonids, particularly when sampling error plays a large role in year-to-year 
estimates of population size (although the Holmes correction reduces the impact of 
sample variance). Should the 95% CIs for λ not include 1.0? This could be excessively 
precautionary, particularly for large populations at or near carrying capacity.  

Any metric used for assessment will, at minimum, require a choice of thresholds 
that are not based on science. McClure et al. (2003) do state that the extinction risk metric 
includes arbitrary values. The advantage of extinction risk is that it includes population 
size as well as trend; large populations are, generally, less likely to go extinct than small 
ones. A problem arises when extinction risk is taken literally, rather than regarded as an 
index. There is a certain preposterousness about the 100 year time frame. However, short-
term extinction risk (e.g., probability of extinction in, say, 10 or 15 years), while possibly 
more palatable to decision-makers, is not an appropriate metric because populations 
should not be delisted unless their status assures long term viability. Even if we don’t 
believe in a 100 year prediction, extinction risk provides a comparable assessment metric: 
high extinction risk is not desirable, low extinction risk is. 

Has this issue been addressed sufficiently? Not entirely. More work needs to be done. 
 

 

PART V. RECOMMENDATIONS 
 
1. Perform a Quantitative Analysis of Alternative Methods 

We suggest that an assessment of alternative methodologies on real and 
computer-generated time series (from age-structured models) could clear up some of the 
debate about the utility and accuracy of different approaches. Specifically, the relative 
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merits of stochastic Leslie matrices and Kalman filtering methods for estimating µ (λ) 
and, more importantly, the confidence intervals for λ should be explored more 
thoroughly. Alternative methods and modifications to the DH diffusion approximation 
should address the importance of the time window for assessment, potential 
nonstationarity, the costs and benefits of data pooling, and non-independence of 
populations.  

 
2. Acknowledge and Incorporate Data Quality 

Provide distributions of µ whenever possible, using moving windows, Kalman 
filters, or resampling methods. Acknowledge uncertainty by being up front about it – 
provide sample sizes and variance for within year population size estimates and the 
number of years used in the analysis (missing from data table in McClure et al. 2003). 
Simulations with more complex models have been used to test the robustness of DH 
under a range of conditions (Holmes 2004). We suggest that a similar assessment be done 
on monitoring methods and metrics, to determine the level of monitoring required to 
provide good estimates of population size. A project underway at the EPA Western 
Ecology Division (Corvallis, OR) may provide some guidance for monitoring effort and 
data reliability. 

We recommend establishment of minimum criteria for including data in 
assessments. In some cases, poor data of insufficient length can bias estimates 
dramatically. Criteria could be based on a simple minimum number of years or a 
minimum confidence interval on µ. If data for a stock do not meet the criteria, that stock 
will have to remain “unclassified” until more data can be collected. This will be 
problematic for management, but some level of quality control needs to be established to 
assure that appropriate results are obtained. 

 
3. Time Frame for Assessment 

We advocate the use of a “moving window” of fixed duration (3 generations) to 
estimate µ and its confidence interval for each stock. The data used in the DH 
approximation should be smoothed by a consistent method that gives the most robust 
results (to be determined – see recommendations above). By evaluating µ over several 
moving windows, we can narrow our confidence estimates of µ and detect changes due to 
low frequency noise (cycles). The robust estimate of µ suggested by Holmes would 
remove “outliers” and could be based on standard deviations of population size, but may 
be more contentious than simply including all the data (smoothed by 4 year running sum 
or Kalman filter). 

 
4. Density Dependence and Increasing Populations 

It is possible that listed populations could rebound relatively quickly and reach a 
carrying capacity for their environment. Under this circumstance, µ would increase and 
then level off, possibly masking population health and providing an overly cautious 
assessment. A population with µ = 0 and high year-to-year variance will exhibit 
moderately high extinction probability, dependent on population size. Reaching carrying 
capacity may not be sufficient for delisting if carrying capacity has been compromised by 
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reductions in habitat quality. With a moving window calculation of µ and σ2, the 
estimates of the true µ and σ2 should improve through time. We suggest further scenario 
testing with real and artificial time series to explore the potential for Type I (delisting 
prematurely) and Type II (failure to delist a healthy population) assessment errors (Payne 
and McElhany). 

 
5. Subjective Thresholds: Extinction risk and Quasi-Extinction Population Size 

Acceptable risk thresholds are subjects of debate among stakeholders and cannot 
be addressed by science. The commonly used "5% chance of extinction in 100 years" is 
an arbitrary risk level over an arbitrary time scale. However, all assessment metrics will 
include some "arbitrary" thresholds. These may be based on mutually agreed upon risk 
levels (e.g., through "expert opinion" panels) or, in a few cases, on statistical analyses of 
simulation results (for an example, see the recovery factor determination for marine 
mammal bycatch limits in Wade 1998). The DA models can be run with any accepted 
risk criteria.  Standardizing the thresholds enables cross-population and cross-ESU 
assessment comparisons. The "quasi-extinction" threshold should represent a population 
size below which recovery is unlikely to occur, at least without intervention. Quasi-
extinction thresholds may also be arbitrary, because this is a difficult parameter to 
estimate from field data. However, quasi-extinction thresholds for salmonids could 
depend on factors that contribute to density-depensation. Depensation is a reduction in 
survival or reproductive output that occurs at low densities, and has been noted in 
statistical analyses of some fish stocks (Liermann and Hilborn 2001). For example, the 
density of spawners returning to a watershed may need to be above a threshold to assure 
adequate fertilization rates. Further research and synthesis of existing data may narrow 
the range of subjective thresholds, but the acceptable risk level for assessment and 
recovery criteria is largely a societal choice. 
 
6. Use of Qualitative vs. Quantitative Results 

Although extinction risks may be unreliable for particular stocks, there is a 
qualitative “weight of evidence” assessment that should be acknowledged by managers. 
Although several studies have shown that extinction itself is due to stochastic processes 
affecting individuals (Fagan et al. 2004), at the ESU level we may need to be satisfied 
with a relative ranking of risk, given that we probably can’t do much better with data 
available. Too much attention to the apparent lack of precision of extinction risk for 
individual stocks may overwhelm the fact that a technique works well most of the time. 
Nevertheless, while aggregate assessments of DH are usually “right”, the particular 
attributes of simulations that do not match prediction should be investigated thoroughly.  

We suggest that NMFS explore alternative metrics for assessment that 
compromise between practicality and the best estimate of population status. As long as it 
is clearly defined and used as a relative index, rather than an absolute, there is no obvious 
reason why extinction risk is an unacceptable choice. 

 
7. Provide Guidance for Applications to Management  

Many of the management application issues discussed at the workshop are under 
analysis by the TRTs and do not pertain directly to an assessment of the DH approach. 
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The Lower Columbia-Willamette TRT has an unpublished report on assessment and 
delisting recommendations that is available through the NWFSC. 

Management models applied across a wide range of data quality should be 
consistent to assure that results are comparable, even if biological realism must be 
sacrificed. Holmes (2004) provides a number of examples from simulations to show that 
the diffusion approximation is robust to a wide range of potential effects and assumption 
violations. However, the robustness of the DH method should not provide an excuse for 
avoiding better data collection. Good data sets provide critical information for testing the 
simpler models and developing new and better approaches. Age structure information, in 
particular, may reveal changes in population behavior that are not evident from a time 
series of spawner counts, particularly population responses to density and harvest 
(Hinrichsen).  

 
8. Management Alternatives 

Measures of population status, including µ and extinction risk, do not provide 
managers with information about how to promote population recovery. The relative 
impacts of natural and anthropogenic stressors on populations requires a more detailed 
analysis of life history and survival rates (e.g., a sensitivity analysis of an age- or stage-
structured model) specific to the population of watershed under consideration. The 
important thing to acknowledge is that different models are good at different things; DH 
is designed to provide a robust assessment of population trend, and, potentially, changes 
in extinction risk if management can increase µ or decrease σ2 . It is not a good model for 
ranking alternative management strategies unless those strategies can be translated into 
predicted changes in µ.  

 
 
 

CONCLUSIONS 
 

In closing, we suggest that the Dennis-Holmes parameterization for DA, and resulting 
metrics of extinction risk, are scientifically sound, rigorous to many uncertainties and 
serve as a robust method to compare the status of salmonid stocks. How model results are 
interpreted and used is a separate issue for debate by managers and biologists. The 
simulation tests for model robustness clearly show that, on average, the DA model 
accurately predicts the probability of extinction. Probability of extinction is an acceptable 
metric, but should be used as an index. Improvements to the DA estimation and 
uncertainty estimation may marginally improve these estimates, and should be explored 
through simulation analysis. However, we concur that the methods outlined in the 
Holmes white paper provide the best available assessment tool for salmonid stocks across 
ESUs. 
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Clarifications from presenters  5.1 

 

After reviewing the report by Dr. Deutschman and Dr. Heppell, the workshop presenters 
were given the opportunity to submit clarifications of their presentations.  Dr. Hyun sent 
in the attached clarifications.  Dr. Hyun’s talk is attached along with the other 
presentations in section 4.  The manuscript upon which this talk and the following 
clarifications are based is 
 
Hyun, S. and A. Talbot.  2004.  Status of Snake River Spring/Summer Chinook Salmon 
and Steelhead by an Integrated Risk Metric.  Columbia River Inter-tribal Fish 
Commission, report. 
 
Drs. Deutschman and Heppell were given Dr. Hyun’s comments (below) and the Hyun 
and Talbot (2004) paper (above) to review and given the opportunity to change their 
report if they saw fit.  They indicated that their report should stand as originally written. 
 
Dr. Hyun’s clarification: 
 
Dear Drs. Deutschman and Heppell 
 

In response to your comments about my presentation on 5 December 2003, I am 
writing this.   

 
Concern about independence for integrated risk metric 

One of the key components in my methods is to make valid the independence between 
the two events {mu<0} and {PSR<1}.  Because of the independence concern, I did not 
use the same data set for the respective calculation.  For example, post-1980 data series 
(1980 - the most recent year) was used for the calculation of Pr(mu<0), whereas pre-1975 
data series (the earliest year - 1975) and abundance index from the most recent year were 
used for the calculation of Pr(PSR<1).  The data used repeatedly for these calculations is 
only single datum from the most recent year.  Though there is an autocorrelation concern 
in time series of annual salmon abundance, the cohort strength before 1975 is less likely 
to be correlated to the current population size.  Salmon longevity is at most about five or 
six years.   

After my talk in the workshop, Heppell asked about an alternative idea of using data 
from the recent few years rather than using datum from only the most recent year in 
calculating Pr(PSR<1). My first thought was it would be possible.  But later I realized 
that the alternative idea would make the independence weak, because quantity of 
Pr(mu<0) already has the information of data from the recent few years (in other words, 
estimates of mu an sigma2 already contain the information).  For the valid independence, 
I favor my original idea.  Heppell’s question helped me to re-think and justify the 
independence. 

You say ‘In fact the data presented by Hyun show that the two quantities are strongly 
correlated (line 3-4 on p.8).’  These comments surprise me very much.  Where did you 
find them?  My presentation file did not show full data set for the analysis.  Because you 
may want to check my talk file, I attach that file here.  
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Indeed, the actual correlation coefficient value between Pr(mu<0), and Pr(PSR<1) was 
small (rho = 0.166) enough to support the independence.  Because you may want to 
calculate the correlation coefficient, I show Table 1 below, which has two columns 
Pr(mu<0), and Pr(PSR<1).   

Table 1. Summary of risk metrics estimated with post-1980 data series of spring/summer 
chinook salmon populations.  Code is the population code, Unit is the abundance index’s 
unit, n is the length of annual time series data, and y1 and y2 are the range of annual time 
series data.  Integ. risk is ‘Integrated risk metric’.   

 

Concern about one point (Icurrent)  
I agree to your opinion that one point (Icurrent) may not be indicative of current 

population health due to stochasticity.  However, I don’t reach conclusions only with 
values of Pr(PSR<1).  Conclusions are based on both estimates of mu and sigma2 in the 
DA model, and the distribution of PSR.  Estimates of mu and sigma2 in the DA model 
contain information about stochasticity in population size over time. 

 

Bayesian methods 
Your comments about Bayesian methods (the second paragraph on p. 8) also have me 

feel that you may not have understood my presentation well, or my presentation may not 

Code Unit* n yr1 yr2 2σ̂ µ̂ Pr( µ <0) Pr(PSR<1) Integ. risk
4 RC 20 1980 2001 0.020 -0.103 0.998 1.000 0.998

23 RC 17 1980 2001 0.020 -0.068 0.960 1.000 0.960
20 TLC 19 1980 2001 0.224 -0.107 0.809 1.000 0.809
28 RPM 22 1980 2001 0.318 -0.006 0.519 1.000 0.519

6 RC 14 1981 2001 0.381 0.006 0.489 1.000 0.489
24 RC 20 1980 2001 0.208 0.023 0.420 1.000 0.420
25 RC 22 1980 2001 0.200 0.024 0.411 0.974 0.400
19 TLC 20 1980 2001 0.393 0.042 0.395 0.972 0.384

7 Exp.RC 22 1980 2001 0.050 0.005 0.466 0.789 0.368
2 RC 22 1980 2001 0.159 0.027 0.388 0.622 0.241

14 TLC 22 1980 2001 0.178 0.068 0.248 0.943 0.234
11 Exp.RC 22 1980 2001 0.039 0.031 0.251 0.721 0.181
15 TLC 22 1980 2001 0.431 0.066 0.335 0.526 0.176

1 RC 22 1980 2001 0.062 -0.002 0.511 0.314 0.161
16 RC 19 1980 2001 0.054 -0.049 0.795 0.186 0.147
10 RC 22 1980 2001 0.048 0.067 0.097 0.705 0.068

3 TLC 22 1980 2001 0.029 0.061 0.062 0.787 0.049
9 RC 22 1980 2001 0.044 0.040 0.211 0.233 0.049

21 RC 22 1980 2001 0.467 0.195 0.113 0.415 0.047
5 RC 22 1980 2001 0.023 0.070 0.026 0.416 0.011

31 RC 14 1981 2001 0.233 0.839 0.000 1.000 0.000
26 RC 21 1980 2000 0.020 0.202 0.000 0.996 0.000
27 TLC 18 1980 2001 0.452 -0.116 0.741 NA NA

8 TLC 22 1980 2001 NA -0.056 NA NA NA
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have been clear to you.  The section of Bayesian methods has nothing to do with the joint 
probability of two events, {mu<0} and {PSR<1}.  Please refer to my presentation file 
again. 

 

White paper of E. Holmes 
You say, ‘… in my opinion, they did not refute the method outlined in the Holmes white 

paper (line 25-26 on p. 10).’  Though I did not refute Holmes’ paper, I raised some 
concerns in my presentation (again please refer to my presentation file).  In the workshop, 
I reported that Holmes’ estimator of sigma2 (namely slope sigma2) can lead to its negative 
value.  Because the variance should be non-negative, the estimator needs to be improved.  
I believe someone else is likely to raise this concern in time.    

Another minor issue that I raised was the algorithm of Bayesian calculation.  This 
minor concern can be quickly fixed by a statistician fluent in Bayesian programming, so 
you may ignore the second concern. 

Though I raise two concerns about Holmes’ paper, I highly appreciate her contribution 
in risk/extinction analyses.  She is a good scientist. 

  

General comments 
Now I feel the workshop audience including you may not have had enough time to 

digest my presentation at that time.  Please feel free to refute or discuss my writing in this 
letter again.  I would sincerely appreciate your re-evaluating my presentation. 

 

Saang-Yoon Hyun, Ph.D. 
Columbia Inter-Tribal Fish Commission 
729 NE Oregon St. Suite 200 
Portland, OR 97232 
Email: hyus@critfc.org 
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BACKGROUND FOR THIS WHITE PAPER 
 

The 2000 Federal Columbia River Power System (FCRPS) Biological Opinion 
(FCRPS Biop) evaluated whether the operation of the FCRPS, when combined with 
survival rates expected to occur in all other life stages of ESA listed salmonids, would 
result in a “high likelihood of survival and a moderate-to-high likelihood of recovery.”  
This qualitative determination was informed by quantitative estimates for several 
evolutionarily significant units (ESU).  Specifically, NOAA Fisheries evaluated:  

• whether or not there would be a 5% or lower probability of absolute extinction of 
natural spawners within 24- and 100-year periods as a “metric indicative of 
survival;” 

• whether or not there would be at least a 50% probability of the 8-year geometric 
mean natural spawners being equal to, or greater than, interim recovery 
abundance levels in 48 and 100 years as a primary “metric indicative of 
recovery;” 

• and whether or not there would be at least a 50% likelihood of the annual 
population growth rate (“lambda”) being equal to, or greater than, 1.0 as an 
alternate “metric indicative of recovery” for populations lacking interim recovery 
abundance goals. 
 
The basis for each of these indicator metrics was an analysis of the population 

growth rate associated with time series for relevant spawning aggregations.  Population 
growth rate was calculated using the methods described in McClure et al. (2003).  The 
Biological Opinion specified that several tests based on population growth rate would be 
conducted in 2005 and 2008 to ensure that implementation of the Biological Opinion was 
on track and that populations were not declining further.  The Biological Opinion 
assumed that by 2005 there would be more information about methods of calculating 
population growth rate, so it specified the following: 
 

“NMFS anticipates that methods of assessing annual population growth rates will 
have been refined, based on NMFS’ research efforts, those of the Action 
Agencies, or those of independent scientists.  In anticipation of this normal 
progress in scientific methods, NMFS does not now define a specific method by 
which population growth rate will be determined for its mid-point evaluations.  
By March 1, 2005, NMFS will choose the most appropriate method(s) to estimate 
population growth rate from the peer-reviewed literature, based on collaboration 
with the Action Agencies, USFWS, and the state and Tribal comanagers.” 

 
In June 2003, the Biological Opinion was remanded in National Wildlife 

Federation v. NMFS.  NOAA Fisheries is currently in the process of revising the 
Biological Opinion and re-evaluating the effects of FCRPS operations and offsite 
mitigation activities.  To facilitate this process, the NOAA Fisheries Northwest Regional 
Office (NWRO) requested that the Northwest Fisheries Science Center (NWFSC) 
conduct the above-referenced review of population growth rate estimation methods in 
2003.  In addition, the NWRO requested that that the NWFSC review related methods of 
characterizing population trends, especially those that had been suggested as alternatives 
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to “lambda” estimation in comments on the draft of the original Biological Opinion and 
in comments or litigation since the Biological Opinion was issued. 
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INTRODUCTION 
 

The purpose of this report is to review and discuss methods for estimating and 
presenting population trends and extinction risks for Columbia River salmonid 
populations to support management decisions, such as the ESA Section 7 determination 
in the 2000 FCRPS Biological Opinion and the anticipated 2005 and 2008 check-in tests.  
This report reviews research since 2000, which tests and validates diffusion 
approximation methods for estimating population trends and risks.  This review 
summarizes information from the following publications: 
 
Holmes, E. E.  2004.  Beyond theory to application and evaluation: diffusion 

approximations for population viability analysis.  In press in Ecological 
Applications. 

Fagan, W. F., E. E. Holmes, J. J. Rango, A. Folarin, J. A. Sorensen, J. E. Lippe, and N. E. 
McIntyre.  2003.  Cross-validation of quasi-extinction risks from real time series: 
an examination of diffusion approximation methods.  Pre-print. 

McClure, M., E. Holmes, B. Sanderson, and C. Jordan.  2003.  A large-scale, multi-
species risk assessment:  anadromous salmonids in the Columbia River Basin.  
Ecological Applications 13: 964-989. 

Holmes, E. E. and W. F. Fagan. 2002.  Validating population viability analysis for 
corrupted data sets.  Ecology 83: 2379-2386 

Holmes, E. E.  2001.  Estimating risks in declining populations with poor data.  
Proceedings of the National Academy of Science 98: 5072-5077. 

 
Summary of work and changes as they pertain to the methods in 
FCRPS Biop 
 
Changes in the methods for estimating trend and risk: 
 1)  Running sum filter has been standardized to use a simple sum of four 
consecutive spawner counts.  The work leading up to Holmes & Fagan (2002) clarified 
that this was better than the age-structure based running sum that was originally used. 
 
Cross-validation work 
 The bulk of the work has focused on validating the methods using real time series 
(Holmes & Fagan 2002, Fagan et al. 2003) and more realistic simulations that include 
density-dependence and correlated ocean conditions (Holmes 2004).  Also the underlying 
assumptions of the diffusion model were tested using simulations of salmon models with 
density-dependence (Holmes 2004). 
 
Expressing uncertainty 
 Holmes & Fagan (2002) test the variability in parameter estimates from the 
Dennis-Holmes method and found that the variability is properly estimated.  Holmes 
(2004) begins looking in-depth at how to express uncertainty in a way that it can best 
inform regulatory decision-making.  Confidence intervals are commonly given, but are 
not very useful beyond showing that there is high or low uncertainty.  Bayesian 
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approaches are explored in Holmes (2004).  A Bayesian metric is also used in McClure et 
al. (2003), specifically the probability that λ is less than 1.0 or less than 0.9. 
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THE NATURE OF POPULATION TRAJECTORIES AND RISK ESTIMATION 
Real populations do not grow or decline at fixed rates, but rather show year-to-

year variability in population growth rates, which leads to a population trend that varies 
about some long-term growth rate.  Figure 14 shows an example of three population 
trends that each have the same long-term trend (5% per year decline) and the same year-
to-year variability.  Even though the population trends were generated with the same 
underlying dynamics, the trajectories are different.  This is nature of populations: random 
chance means that there are a range of different possible population trajectories given 
some underlying population dynamics.  Even though we cannot predict exactly what will 
happen in the future, if we could estimate the underlying dynamics governing the 
population trajectories, we could estimate the probability of different futures, i.e. we 
could estimate the probability of reaching critical thresholds.  We can also estimate 
whether the population has long-term declining dynamics.  To do this, we will need to 
estimate the following: the long-term rate of decline (or growth), the year-to-year 
variability in yearly population growth, and the amount of corruption in our data.  Within 
the population dynamics literature, the year-to-year variability in yearly population 
growth is termed ‘process error’; note that it is not technically ‘error’ in the layman’s 
sense of the word, but rather variability.  The rest of the variability is termed ‘non-
process error’ and this includes actual observations errors.  For the purpose of this 
review, one can think of process error as the variability that drives the long-term 
variability of future population size and the non-process error as the data corruption that 
is preventing us from estimating the process error. 
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Figure 14.  Sample simulated population trajectories from a population with average 5% 
yearly decline.  The underlying population dynamics are identical.  The differences are 
due to chance. 
 
The term λ denotes the long-term rate of population decline (or growth).  It is 

simply the long-term trend that you would observe if you had a very, very long time 
series of the population.  The term λ is the standard notation in the conservation biology 
literature.  λ = 1 means stable, λ = 1.01 means roughly increasing 1% per year, and λ = 
1.05 means roughly increasing 5% per year.  Similarly, λ = 0.99 and λ = 0.95 mean 
roughly declining 1% and 5% per year, respectively.  Note that we can only estimate λ; 
we never know the true λ.  Our estimates may be unbiased, but that still means that there 
is a 50/50 chance that the true λ is above or below our estimate. 

One of the most common questions is “If λ is the population trend, why not just 
present the overall trend observed in the data, such as a regression of log numbers versus 
time?” as opposed to going through the analysis based on theory concerning the 
dynamics of population trajectories, which is presented in the next section.  There are two 
main reasons why this is insufficient. 

1)  We need to estimate uncertainty.  The trend tells you what happened but does 
not by itself tell you how likely it is that this trend happened by chance and that the long-
term dynamics are actually quite different.  For example, suppose we collect data on a 
population that has a true long-term average rate of decline of 12% yearly.  Figure 15 
shows an example of the population trend observed from 20-year consecutive time series 
from this population.  Segment 1 is from year 1-20, segment 2 is from year 2-21, etc.  
The wavy lines show the estimates using different methods for estimating the trend; the 
true value is the straight dashed line.  The solid line (“ML”) is a simple regression of log 
natural abundance.  The wavy dashed line shows the runsum method used in McClure et 
al. (2003) and the Biop.  There is much variability in the observed trend in a 20-year 
segment.  This variability is an unavoidable aspect of analyzing stochastic population 
processes.  Population dynamics theory allows us to estimate this year-to-year variability 
and thus estimate how likely it is that a particular observed trend came from a population 
with a particular true λ (such as an increasing or declining population).  But to do this, 
the estimate of the underlying process error in the population dynamics is needed.  A 
natural response would be to argue that standard regression analyses will give you the 
uncertainty of the estimated trend, but unfortunately such analyses attribute all error to 
non-process error and will give you incorrect uncertainty estimates. 

2)  We need to estimate probabilities of crossing critical thresholds.  The trend by 
itself does not give much information about the probability of dropping below critical 
population sizes.  We cannot simply extend the trend into the future and see when our 
line crosses the threshold.  Populations vary from year to year and even a population that 
has a positive growth rate still has some probability of dropping below the critical 
threshold by chance.  To estimate this probability, we again need to estimate the process 
error driving the variability in long-term population sizes. 

In the following section (section I), I review how the parameters driving a 
population process are estimated using diffusion approximation methods.  This section 
also reviews the extensive cross-validation work that was done to verify the applicability 
of these methods for salmon populations.  This section directly applies to the methods 
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used in the FCRPS Biological Opinion.  At the end of this section, there is a discussion of 
alternative risk estimation methodologies and why they were not used.  The next section 
(section II) discusses work that goes beyond the methods used in the 2000 FCRPS 
Biological Opinion.  One of the challenges when presenting scientific analyses is 
presenting the uncertainty in a useful and accurate manner.  It is tempting to use the point 
estimates of risk metrics (i.e. ‘this stock has a λ of 0.981’) and ignore that this is a 
statistical estimate.  λ = 0.981 may be the most likely value given the data, but λ = 0.99 is 
probably almost equally as likely and λ = 1.01 may be entirely plausible.  Section II 
illustrates the use of probability curves as a way to formally express this uncertainty.  
This is a standard approach in decision theory for resource management. 

 

 
Figure 15.  Estimated log(λ) from 20-year segments in a time series.  Segment 1 is year 
1-20, segment 2 is year 2-21, segment 3 is year 3-22, etc.  This shows how the estimates 
vary depending on the segment observed.  The “runsum” method is that used in McClure 
et al. (2003) and for the Biological Opinion calculations. 

 
I.  DIFFUSION APPROXIMATION METHODS FOR POPULATION VIABILITY 
ANALYSIS 

In the last decade, diffusion approximation (DA) methods have been developed 
that use count data alone (for example, spawner counts) for the estimation of population 
viability analysis (PVA) risk metrics, such as the probability of crossing extinction 
thresholds, mean passage times, and average long-term rates of population growth or 
decline (Lande and Orzack 1988, Dennis et al. 1991).  These methods have since been 
used to estimate extinction risks for numerous species of conservation concern (Dennis et 
al. 1991, Nicholls et al. 1996, Gerber et al. 1999, Morris et al. 1999, McClure et al. 
2003).  The appeal of DA methods from an applied standpoint is their simplicity and their 
reliance on simple census data alone (e.g. neither age-structure, cohort-level analyses, or 
total fish numbers are required).  They have become one of the basic quantitative tools 
presented in recent books on PVA methods (Morris and Doak 2002, Lande et al. 2003).  

Diffusion approximation methods stem from theory concerning the behavior of 
stochastic age-structured population models with no density-dependence,  
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where At is the stochastic population transition matrix, e.g. a Leslie matrix, for time t.  
Note that most types of cohort or otherwise age-structured population simulations with no 
density-dependence are specific cases of the general model in Eq. 1.  For such models, 
the asymptotic behavior of the total population size, ∑=

i
tit nN , , is a stochastic 

exponential process (Tuljapurkar and Orzack 1980, Tuljapurkar 1989): 
big  for   ),0(normal~),exp( 2

0 tttNN ppt σεεµ += .                          [10] 
and log Nt/N0 is distributed normal with mean=µt and variance=σ2t for t big.  The 
parameter µ in Eqn. 2 determines the rate at which the median log population size, log Nt, 
increases through time, while σ2 determines the rate at which the distribution spreads, or 
in other words, the variability of potential population sizes at time t+τ.   

Diffusion approximation methods assume that Eqn. 2 holds for all τ > 0 including 
small τ and that the ε are independently and identically distributed.  This allows one to 
model the population as a diffusion process (Lande and Orzack 1988): 
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P(y) means the probability of y.  The diffusion model has the property that log Nt/N0 is 
distributed normal(mean=µt, variance=σ2t) like the stochastic exponential process it is 
used to approximate.  See Dennis et al. (1991) for a much fuller discussion of the 
diffusion approximation.  

This approximation opens a toolbox of parameterization methods for linear 
models with normal error.  It also provides analytical estimates of quasi-extinction 
probabilities, i.e. the probability of crossing a particular threshold at some time within a 
given time frame.  Strictly speaking, however, an age-structured population process is not 
a diffusion process.  However despite the assumption violations, the diffusion model 
approximates many types of stochastic age-structured population processes, as seen both 
from simulated and real data (Lande and Orzack 1988, Dennis et al. 1991, Holmes and 
Fagan 2002, Fagan et al. unpublished manuscript, Holmes 2004).  In particular as will be 
reviewed below, the diffusion approximation works well for salmon population models 
(Holmes 2004). 
 
Parameter estimation methods 

Diffusion approximations for a particular PVA must be carefully selected since a 
poor choice results in poor, highly biased estimates which lead to poor, highly biased risk 
estimates.  Holmes (2004) discusses these issues and careful selection of parameterization 
methods using salmon data as an example.  McClure et al. (2003) presents methods for 
estimating log(λ) and σ2, which have been used by NWFSC scientists for salmon PVA.  
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These methods have been extensively validated with real and simulated salmon data (see 
next section). 

The basic estimation methods currently used for the Biop are presented here 
without discussion; see McClure et al. (2003) for a discussion and examples.  The 
methods use a running sum transformed time series of spawner counts defined as 

∑
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3

0i
itt OR                                                              [12] 

where Ot is the spawner count at year t.  The estimate for log(λ), which is denoted µ, is 
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The estimate of σ2 uses the rate that the variance increases within the time series: 
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 These estimators will likely appear somewhat peculiar on first introduction.  Note 
that the µ estimate is very similar to a linear regression of log population counts 
(typically log spawner counts).  Why use the estimator with a running sum transformation 
of the data?  Extensive testing described in Holmes (2001), Holmes & Fagan (2002) and 
especially Holmes (2004) indicates that the runµ̂  gives the least variable estimates of 
µ (see also Figure 15).  Estimation of the process error is an especially difficult problem.  
Holmes (2004) reviews the currently available methods in the literature.  Again extensive 
cross-validation work (see especially Holmes 2004) found that 2ˆ slpσ  performs the best for 
salmon data. 
 One of the difficult problems with analyzing salmon spawner data is that hatchery 
fish are input into the stocks.  Perhaps the easiest way to see how this presents a problem 
for estimating λ is to consider the analogy of a mutual fund.  Suppose you put $1000 into 
a mutual fund 5 years ago and now you have $8000.  You would like to know what the 
average rate of return (this is λ) has been so that you can decide whether to keep you 
money in this fund or move to another.  Normally, you would just take (8000/1000)^(1/5) 
= 1.51, which means that your fund returned an incredible 51% per year.  However, your 
benevolent aunt has been automatically adding $100 a month to your brokerage account, 
and you need to factor this in (these are the hatchery fish).  Problem is you don’t know 
whether her monthly gift was added to your mutual fund (the hatchery fish reproduce) or 
was simply deposited to your brokerage account but not invested (the hatchery fish don’t 
reproduce).  Without this information, you can only deduce the range of the possible 
average rates of return for your mutual fund.  If not added to mutual fund, the rate of 
return was ( (8000-100*12*5)/1000 )^(1/5) = 1.15, which is still a nice 15% per year.  If 
added to the mutual fund, rate of return is found by finding the λ that solves:  

8000 = 1000*λ^5 + 100*∑
=

5*12

0

12/

i

iλ , 

which is λ = 1.05 and means a rather paltry 5% per year growth.  Thus, knowing whether 
the monthly deposits were added to your mutual fund or not is a critical bit of information 
you need to evaluate how good a mutual fund you have.  This is exactly the estimation 
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problem we have with hatchery fish.  We need to know whether or not they are 
reproducing in order to evaluate the underlying population growth rate.  In McClure et al. 
(2003) and in Holmes (2004), the hatchery correction is presented.  In the McClure et al. 
PVA, the range of λ for hatchery fish not reproducing versus are reproducing is shown.  
For the Biological Opinion, the range of λ is shown for hatchery fish reproducing 20% as 
effectively as wild-born fish versus 80% as well as wild-born fish. 
 
Risk metrics 
 From the parameters µ and σ2, a number of different risk metrics can be 
calculated.  We have focused on two metrics.  The first is the median yearly growth rate 
or the long-term yearly growth rate, which is denoted λ.  Suppose you were able to 
observe 1000 20-year population trajectories with the same underlying dynamics (i.e. the 
same µ and σ2 parameters) and each starting from the same initial size, much like Figure 
14.  The trajectories would all look different due to chance.  The yearly growth rate you 
observed in the ith (out of the 1000) trajectory is 

λi = [(end population size)/(start population size)]^(1/(number of years)-1) 
The median λi from all 1000 would be exp(µ); on average 50% of trajectories would 
show a yearly growth rate greater than exp(µ) in those 20 years and 50% would show a 
lower growth rate.  An estimate of this median yearly growth rate is what we term λ.  It 
also happens to be the yearly growth you would observe from a very long time series 
since λi goes to exp(µ) as the number of years gets very large.  This is why the λ estimate 
is referred as an estimate of the median yearly growth rate or the long-term yearly growth 
rate.  For a particular time series with n years, the λ estimate is 
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n nrun −−
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The second metric is the probability of hitting a particular critical population 
threshold, Ne, within some period of time te, starting from the population size N0.  This is 
calculated from a diffusion approximation of the population process (Dennis et al. 1991): 
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The function Φ is the standard normal cumulative distribution function.  If you are 
interested in percentage-wise declines, e.g. 50%, 75% or 90%, then it is not necessary to 
know the actual population size, since (N0/xN0) = (1/x).  In this case, the probability of 
crossing critical thresholds can be estimated using on index data without information on 
the total number of spawners.  If however, declines to specific absolute thresholds are of 
interest, total spawner counts are needed and it is also necessary to transform the spawner 
count into a count that reflects the total population rather than just spawners in a 
particular year.  See McClure et al. (2003) for a discussion of this transformation. 
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Validation studies of diffusion approximations for salmon populations 

Here I review cross-validation studies of the performance of the diffusion 
approximation model for salmon data and populations, including populations 
experiencing density dependence.  Holmes (2004) discusses evaluation of the diffusion 
approximation and estimation methods using simulated data.  This study used detailed 
population models for Upper Columbia River steelhead, Snake River fall chinook, and 
Snake River spring/summer chinook as examples.  The models were parameterized from 
survivorship and fecundity data from these ESUs.  The models include density-
dependence in parr to smolt survivorship reflecting that found in low density Snake River 
chinook stocks (Achord et al. 2003).  The models also include sampling error in the range 
of that observed for redd-count data (standard error 0.3 to 0.85). 

The first question in this study was whether a diffusion approximation correctly 
described the behavior and probability of crossing thresholds for the age-structured 
models.  The first test described in Holmes (2004) is an examination of the linearity 
assumptions inherent in the diffusion approximation.  This key test is somewhat 
technical, and is described in Holmes (2004).  The results of this test were that the 
linearity assumptions were satisfied for t > 5 years which means that (as is well-known) 
the diffusion approximation should be used to make medium and long-term projections 
not short-term projections (t < 5 years).  The second test was whether a diffusion 
approximation would properly characterize the probability that the simulated time series 
would cross a threshold (in this case, 90% decline) in different time frames.  This 
analysis is shown in Figure 16.  The gray line shows the actual probability of crossing the 
90% decline threshold within different time frames (determined by repeating the salmon 
simulations 1000s of times) versus the probabilities from a diffusion approximation.  This 
illustrates that the probability of 90% decline in these salmon time series can be described 
by a diffusion approximation. 
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Figure 16.  Actual versus predicted probability of 90% decline within different time 
horizons.  From Holmes (2004). 

 
Simply because a diffusion approximation exists which properly characterizes a 

particular population process does not mean that we can estimate the parameters for that 
process given realistic data constraints.  Holmes (2004) also studies estimation 
performance given data constraints faced by the PVA of Columbia River salmon stocks 
(McClure et al. 2003): 1) counts of only the spawning segment of the populations, 2) time 
series limited to 20 years, 3) severe age-structure perturbations in the beginning of some 
time series due to reproductive collapses during dam construction (Williams et al. 2001), 
4) high observation error in the spawner counts, and 5) high year-to-year correlation in 
ocean survival (correlation coefficient of 0.8 between adjacent years).  Figure 17 shows 
box plots of the estimates of log(λ) following the estimation methods described above 
(also in McClure et al. 2003) for 1000 random simulations from the three species’ 
models.  The output from the models (spawner counts) was ‘corrupted’ by different levels 
of sampling error: age (meaning an age perturbation due to no reproduction in one year), 
low, medium and high observer error.  The dotted line in the graph shows the true value 
of log(λ).  In the box plots, the middle line is the median estimate of log(λ) and the box 
encloses 75% of the estimates.  As can be seen in the figure, the runsum method for 
estimating log(λ) works for these simulated salmon time series even within the data 
constraints; the median estimate is the true value even with added observer error in the 
spawner counts. 
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                     Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Type of Error Added 

 
Figure 17.  Distribution of log(λ) estimates using runµ̂  from 1000 simulated time series 
from age-structured models of Snake River spring/summer chinook, Snake River fall 
chinook, and Upper Columbia steelhead.  The models include density-dependent smolt 
survivorship.  From Holmes (2004). 
 

Figure 18 shows a similar analysis for the estimation of the process error, termed σ2.  
Recall that the process error specifies the variability of potential future population 
trajectories and is a key parameter determining the probability of crossing thresholds.  
This analysis indicates that for low observation error 2ˆ slpσ  provides an unbiased estimate 
of the true value of σ2, but as observation error increased, the estimate becomes 
increasingly biased.  ‘Medium’ represents the average estimate of typical observation 
error in the Columbia River data based on studies of observer error in redd count data 
(see discussion in Holmes 2004). 

 
                      Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Figure 18.  Distribution of 2ˆ slpσ  estimates from 1000 simulated time series from age-
structured models of Snake River spring/summer chinook, Snake River fall chinook, and 
Upper Columbia steelhead.  The models include density-dependent smolt survivorship.  
From Holmes (2004). 

 
Simulated data is very useful, however it is ‘simulated’ and certainly lacks some 

aspects of real time series data.  Another cross-validation (Holmes and Fagan 2002) 
involved testing the bias and precision of the diffusion approximation parameter 
estimates using hundreds of real time series.  The strategy was to use the first 15 years of 
a time series to predict the second 15 years of the time series.  The bias and variability of 
these predictions could then be tested against the predicted bias and variability.  The two 
parameters tested were log(λ) and σ2, which appears in the probability of crossing 
thresholds metric along with log(λ).  Figure 19 shows the results of this analysis for the 
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log(λ) estimates.  This analysis involved 30-year time series within a 1920 to 1999 time 
frame. 

 
Figure 19.  Distribution of actual log(λ) estimates (bars) versus predicted distribution 
(solid black line from 147, 42 and 47 chinook, steelhead and Snake R spring/summer 
time series respectively.  From Holmes and Fagan (2002). 
 

The close match between the observed and predicted distributions indicates that the 
log(λ) estimate was properly characterized in terms of its mean value (the peaks match).  
That is the mean trend in the first half of the time series was the same as the mean trend 
estimated in the second half of the time series.  Figure 19 also demonstrates that the 
uncertainty in the log(λ) estimate (its variability) was also properly characterized since 
the width of the distributions match.  

That the mean trend in the first 15 years was the same as the mean trend in the 
second 15 years appears at first glance to contradict the observations of strings of good 
years versus bad years.  However keep in mind that this analysis used 30-year time series 
across the 1920 to 1999 period.  It was asking about the average estimate across different 
time periods.  What about estimates only during a specific time period?  Figure 20 shows 
the difference between the trend in the first 15 years of a time series versus the following 
15 years for specific time frames, i.e., not the average across all time periods, but the 
average if you only look at time series in a specific time period, say 1970-1999.  The 
solid line is a measure of the difference between the trends in the first 15 years versus the 
following 15 years.  Deviations above zero indicate that on average there was a more 
declining trend in the first 15 years versus the next 15; while deviations below zero 
means that on average the population was declining less in the first 15 years versus the 
next 20 years.  These results show the average difference from all the West Coast time 
series put together.  What you can see is that across the West Coast, stocks were on 
average declining more in 1959-1973 versus in 1974-1993 while the opposite was true 
for 1964-1978 versus 1979-1998. 
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Figure 20.  The solid line measures the difference between the average trend in the first 
15 years versus in the second 15 years from a collection of 30 year time series of West 
Coast chinook and steelhead stocks (200+ stocks).  “Mean of t-statistics” = 0 means that 
the average trend (across the whole West Coast) was similar in the first 15 years versus 
the following 15 years.  “Mean of t-statistics” > 0 means that the on average stocks were 
declining more in the first 15 years relative to the following 15 years.  The year on the x-
axis denotes the start of the middle of the 30-year segment.  The dashed line is the 95% 
confidence intervals for a random collection of time series, i.e., if there were no 
underlying environmental cycles causing “good” and “bad” series of years.  Holmes 
unpublished analyses. 

 
It is tempting to attribute these ‘good’ versus ‘bad’ strings of years to an 

environmental driver, such as ocean conditions that one could presumably model.  While 
this may be the case, the data by themselves do not necessarily support this since this 
type of cycling good and bad strings of years can happen simply by chance in a collection 
of stochastic population time series.  Indeed this is what Figure 15 illustrates.  The dotted 
lines in Figure 20 show the 95% confidence intervals assuming that the time series were 
all completely independent.  This is a conservative estimate since they are not all 
independent and the true 95% confidence intervals are farther apart.  What we can see is 
that the solid line falls within the conservative 95% confidence intervals suggesting this 
West Coast pattern of good and bad strings of years is not inconsistent with the 
hypothesis that it occurred by chance. 

The Holmes and Fagan (2002) analysis also looked at how well the diffusion 
approximation predicted the probability of 90% decline.  This analysis searched for a 
difference between the mean diffusion approximation estimates of the probability of 90% 
decline and the observed mean probabilities within the collection of West Coast salmon 
time series.  Figure 21 shows the estimated versus actual mean probabilities.  The gray 
solid line (Dennis-Holmes) is the method used in the salmon PVA (McClure et al. 2003).  
The close correspondence between the actual and observed indicates that first the 
diffusion approximation approach is correctly estimating the mean probabilities and 
second that the parameters of this approximation were not being systematically 
misestimated.  Note that this analysis focuses on mean estimates of probability of decline.  
The issue of the variability in estimates of probability of decline is addressed later in this 
document. 
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Figure 21.  Probability of 90% decline versus observed probabilities with the West Coast 
salmon time series.  From Holmes and Fagan (2002). 

 
Why the diffusion approximation approach versus other approaches for describing 
trends and risks in salmon populations? 

Diffusion approximation approaches for estimation of risk metrics are grounded 
in theoretical work on stochastic population processes (reviewed in Holmes and Fagan 
2002 and Holmes 2004).  These methods are one of the basic quantitative tools in 
population viability analysis and are featured in two current books on quantitative 
methods for analyzing population data (Lande et al. 2003, Morris and Doak 2003).  The 
long-term rate of population growth is termed λ and is one of the most commonly used 
risk metrics within the field of conservation biology.  Note that λ does not refer to a 
specific method of estimation, but rather simply the median or long-term trend in the 
population.  There are a variety of methods for estimating λ.  The most familiar within 
the conservation biology literature is to calculate λ from estimated Leslie matrix models.  
Diffusion approximation approaches present a way to estimate λ when only time series is 
available, and present a method for estimating the uncertainty in λ, which estimated 
Leslie matrix models do not provide. 

However in the context of salmon management, traditionally other metrics of risk 
and population trend have been used.  Some of the typical metrics that have been used or 
suggested are log recruits per spawner, SARs, 8-year geometric means of the natural 
cohort return rate, a simple regression of log natural abundance versus time, and residuals 
from a stock/recruit relationship.  Some of these (log recruits per spawner and a 
regression of the log abundance versus time) have a close relationship to λ and indeed 
can be viewed as alternate methods for estimating λ.  Many of the other methods, 
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however, differ in a fundamental way in that they measure only a portion of the life cycle, 
i.e., survivorship or fecundity of only certain stages rather than from spawner to spawner.  
One of the key aspects of λ is that it integrates across the entire life-cycle.  It is not a 
measure of one stage’s survivorship or fecundity alone, but rather of the integration of 
survivorship and fecundity over the entire life cycle, much like a spawner-to-spawner 
ratio does.  This is important when one is trying to assess a population rather than a 
particular stage since high survivorship in one stage can easily be offset by low 
survivorship in another stage. 

Below the methods that have been more common in salmon management are 
discussed in terms of how they relate to λ and the estimation long-term population trends. 

 
Log recruits to the spawning grounds per spawner 
 Log recruits (to the spawning ground) per spawner is another way to estimate 
log(λ) since the expected value of (1/T)*ln(R/S) = log(λ), where T is the mean age at 
which fish spawn.  This can be derived from theory on stochastic population processes 
(see review by Caswell 2001, 14.3.2) and is essentially what is shown by Eqn 14.47 in 
Caswell (2001) – although this probably will not be transparent on first glance.  
Obviously the estimates you get of log(λ) from Eq. 5 versus (1/T)*ln(R/S) are going to be 
different for a specific finite time series; you expect this using different methods even 
though the expected values (the average estimates) are identical.   

If (1/T)*ln(R/S) can be used to estimate log(λ), why not use that since it is more 
familiar for fisheries biologists?  First it is not a more accurate nor less variable estimator 
– a simple simulation demonstrates this.  Figure 22 shows the performance of 
(1/T)*ln(R/S) as an estimator of long-term growth, λ.  The salmon simulations are the 
same as those used for Figure 17 to test the performance of the runsum estimator.  As 
reviewed previously, this is age-structured simulation (read cohort-based model) with 
correlated ocean conditions and density-dependent juvenile survivorship.  To estimate 
“recruits per spawner” perfect age of return information was used, however the estimates 
did not seem to degrade significantly with less precise age information and even 20 fish 
random samples gave sufficiently accurate age of return information in these simulations.  
Row 2 shows the estimates from the runsum estimator and Row 3 shows the estimates 
using recruits per spawner.  First note that the recruit per spawner estimates is not less 
variable than the runsum estimator.  Second, note that the R/S estimator is prone to bias, 
i.e. the median estimate is not equal to the true value, unlike the runsum estimator or the 
other estimators: the dennis estimator or the slope estimator.  This may be due to using a 
mean age of return and may be rectified by using a cohort-specific mean age of return for 
each cohort.  However, note that the estimates are sensitive to sampling error in the 
spawner count and that the bias increases significantly when there is high spawner count 
errors.  This bias is unlikely to be improved by using a cohort-specific age of return.  The 
runsum estimator, and the other two estimators, do have these bias problems.  Thus the 
estimate of λ using recruits per spawner estimates requires much more data and effort to 
estimate – with no apparent decrease in the variability of the log(λ) estimates and with an 
increase in bias and sensitivity to sampling error.  To the extent that the age-at-return data 
contains errors this adds additional errors to the ln(R/S) estimate.   

There are additionally reasons the less data intensive methods are preferable.  If 
we want to compare stock status for example to prioritize recovery actions, using a 
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consistent method across all stocks is critical.  For the vast majority of stocks, the 
additional data to estimate R/S is not available so we can’t estimate ln(R/S).  Fourth, 
establishing the uncertainty in the estimate of ln(R/S) would be difficult.  We would 
either have to model the error in age-at-return data, which would require some ad hoc 
assumptions since we have limited information on this error, or we would have to 
bootstrap from limited age-at-return data.  Fifth, we would still have to estimate the 
process error and estimating this from ln(R/S) data alone is not possible if the population 
is affected by both process and non-process error. 

These comments are specific to estimation of λ and extinction risks estimation 
that relies on λ.  Clearly there are other reasons for recruits per spawner estimates in a 
management context.  While these comments here are not intended to reflect on any uses 
other than estimation of long-term trends and extinction risks, these comments are 
intended as caution concerning how age-of-return information is used.  The example here 
illustrates that incorporating age-of-return data does not always lead improved estimates 
of trend.  Another study, by Zabel and Levin (2002), on estimation of density-dependence 
illustrates that using mean age of return data in recruits per spawner models leads to mis-
estimation of the nature of density-dependence in the population.  Together these 
examples reiterate that methods for estimating population dynamics need to be 
thoroughly tested on simulated data incorporating the types of sampling error and age of 
return errors that one expects in the data at hand. 
 
8-year geometric means of the natural cohort return rate 
 This metric uses the 8-year geometric mean of the spawner-to-spawner ratio for 
the natural spawning component of the population.  Like ln(R/S), this another way to 
estimate λ.  The reasons for not using this metric are the same as those for not using 
ln(R/S); see above discussion. 
 
Smolt-to-adult ratios (SARs) 
 SARs, along with other measures of survivorship, are clearly important for 
analyzing how survivorship changes within a portion of the salmon life cycle.  However 
this metric leaves out the adult-to-smolt portion of the life cycle.  For the purpose of 
tracking the long-term trends, the entire life cycle, spawner-to-spawner, must be included 
since increases in smolt-to-adult survivorship could be offset by decreases in adult-to-
smolt ratios.  Thus, SARs are not used for estimating long-term trends. 

Note also that SARs detailed types of data, which are not available for many 
stocks and makes their analysis regionally limited. 
 
Simple regression of log natural abundance versus time 

λ is the regression of log spawner counts versus time for an infinite (i.e. very 
long) time series.  One way to estimate λ is to use the regression of log spawners versus 
time for the available, finite, time series.  This method could have been used, but 
simulations indicated that it gives estimates that are essentially the same as the runsum 
estimates (Figure 23).  Even if one did use a regression, one needs to use the methods in 
McClure et al (2003) to get the confidence intervals on λ.  The confidence intervals on 
the regression cannot be used since this attributes all error in the data to observation error.  
This is incorrect; part of the error is process error and part of it is observation error, and 
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one needs to use a statistical framework that properly apportions the error into these two 
types.  In addition, one still needs to obtain the estimates of environmental variability, 
which are critical for estimates of the probability of crossing thresholds.  The regression 
will not provide this since again a simple analysis of the variance of the residuals 
attributes error to observation not process error.  Holmes (2004) reviews the currently 
available methods for parameter estimation for population processes with process and 
observation error. 

 Figure 22.  Distribution of log(λ) estimates using the dennis, runsum, recruits per 
spawner, and slope estimators from 1000 simulated time series from age-structured 
models of Snake River spring/summer chinook, Snake River fall chinook, and Upper 
Columbia steelhead.  The models include density-dependent smolt survivorship.  The 
“type of error added” refers to the type of errors in the spawner count data.  None = no 
sampling error.  Age = no sampling error but no age 0 fish at the start of the simulation.  
Low, Med, High = sampling error in spawner that is on the low, medium, or high ends of 
that estimated from Columbia River data.  The models are decribed in detail in Holmes 
(2004). 
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Figure 23.  Example of stimated log(λ) from 20-year segments in a time series with µ = -
0.05 and σ2 = 0.02.  Segment 1 is year 1-20, segment 2 is year 2-21, segment 3 is year 3-
22, etc.  This shows how the estimates vary depending on the segment observed.  The 
regression line (solid black) is from a regression of log counts versus time; the “runsum” 
method (red dashed) is that used in McClure et al. (2003) and for the Biological Opinion 
calculations. 

 
Residuals from a stock/recruit relationship 
 Residuals for a stock/recruit relationship give information on how conditions in 
one year or cohort deviate from some longer trend.  This can be useful for trying to 
determine if underlying changes for the long term trend has occurred, but is not useful for 
estimating the long term trend itself.  Potentially these residuals could be used to estimate 
the environmental variability, although this is certainly not straight-forward.  The 
variability in the residuals will be due not only to environmental variability but also 
variability due to density-dependence and the proclivity of salmon for “boom-bust” 
cycles.  These latter types of variability are important for the short-term variability in 
population trajectories, but tend to dampen out with time and are less important for the 
long-term variability in population trajectories.  Holmes (2004) gives an example of this 
using age-structured salmon models with density-dependence. Note also that residuals for 
a stock/recruit relationship also require age-structure data, which makes their analysis 
limited to stocks with that kind of detailed data. 
 
Other methods 

The methods used in McClure et al (2003) require very simple data, spawner time 
series, however, there are populations with much better and more detailed data, especially 
age-at-return and age-specific survivorship data.  Incorporation of this data into the 
estimation of µ can increase the precision of the µ estimate, and consequently the λ 
estimate.  Hinrichsen (2002) discusses estimation of λ using age-at-return information 
and shows how using this information increases precision although there is no change in 
bias relative to the λ estimate in McClure et al. (2003).  The downside is that the methods 
in Hinrichsen (2002) are sensitive to high levels of observation error, for example, 
standard deviation of observation error greater than 0.7, which is certainly seen in redd 
count data (see discussion in Holmes 2004).  More analytical work needs to be done to 
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get around this sensitivity to observation error, but certainly this research suggests that 
more precise λ estimates can be obtained for those stocks with more extensive data.  This 
is an area that is very promising, however, for regional analyses where we need to 
compare risks among stocks, some of which are data poor, we will have to continue to 
have and rely on methods that use only spawner time series for the sake of consistency. 

Lindley (2003) presents state-space estimation for noisy time series and offers this 
as alternative to the estimation methods used in McClure et al.  State-space estimation 
enables maximum-likelihood estimation of µ and σ2 from noisy data (such as we have for 
salmon data).  It has a strong statistical foundation.  I have also been researching state-
space estimation and tested Lindley’s algorithm in Holmes (2004) and found that it gives 
much worse estimates of σ2 than 2ˆ slpσ  given the particular characteristics and constraints 
we face with salmon data.  The m estimates were similar to runµ̂ , however.  I have also 
investigated a slightly different state-space algorithm for estimation and found similar 
results.  State-space estimation is extremely promising, but a significant amount of 
research is still need to come up with algorithms that perform more robustly than the 
current methods in McClure et al. 
 
Summary 
 While these commonly used metrics are useful for other questions, such as 
looking for survivorship changes in a particular habitat or life stage or understanding the 
contributions of particular age classes to recruitment to the population, they are limited in 
terms of estimating long-term trends, either because they look at just a segment of the 
population, lead to λ estimates that are more variable than the λ estimates used in the 
Biological Opinion, or require data that is not available across all populations.  
Furthermore these other methods do not lead us to an estimation of underlying variability 
in the population process (process error), which is essential for estimation of the 
probability of crossing critical population thresholds and for calculating the uncertainty in 
our risk estimates.  The methods used for estimating λ and extinction metrics as 
described in McClure et al. (2003) have been extensively studied and validated with West 
Coast salmon time series (Holmes & Fagan 2002) and also salmon-specific simulations 
which include density dependence (Holmes 2004). 
 
 
 
The time frame of ones data and  λ estimates 
 Typically choices must be made about the data, specifically the years, to use to 
estimate λ.  The point estimate of λ will depend on the time frame used, however keep in 
mind that in general the point estimate of λ should never be used alone since by itself the 
point estimate does not give an indication of the uncertainty in this estimate.  One way 
present the uncertainty is to use confidence intervals, but confidence intervals are often 
misleading since they give the erroneous impression that the true value is equally likely 
within a large interval.  Likelihood profiles or posterior probability distributions of λ are 
much more useful and give a rapid feel for the uncertainty in the estimate of λ.  If one 
uses a posterior probability distribution, it becomes clear that the estimate of λ is not so 
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sensitive to the time frame of the data or the addition of one extra year of data as would 
appear when only point estimates are presented. 

This being said, selection of a reasonable time frame is very important.  The 
following considerations should generally be kept in mind when selecting the time frame 
to use:  a) more data is better, b) the time frame should be representative of historical 
trends, i.e. not be dominated by ‘good’ or ‘bad’ conditions and not dominated by an 
isolated perturbation and c) for the sake of uniformity and comparison, the time frame 
should be consistent across stocks.  In McClure et al. (2003) the effect of using different 
time frames for estimation, specifically 1980-2000 versus 1960-2000, on risk metrics for 
the Columbia River ESUs is shown.  The differences were not statistically significant nor 
in any consistent direction, i.e. for some stocks the 1980-2000 time period gave slightly 
more severe risk estimates and for others it gave less severe estimates. 

From a management standpoint, λ estimates that vary widely depending on the 
exact starting year of the time series are problematic, and research showing that the 
estimates are statistically optimal while satisfying does not lessen this practical problem.  
There are a couple of strategies that I have proposed to deal with this:   

1) Use robust estimators of the mean for the µ estimates.  Currently in Eqn. 5, a 
straight mean is used, however a straight mean is highly sensitive to outliers.  My 
preliminary tudies of the effect of different start years on λ estimates using Snake 
River spring/summer chinook time series indicated that a robust estimator of the 
mean eliminated much of the problem of λ estimates that vary widely depending 
on the start year.  There are a variety of robust mean estimators; a trimmed mean 
is the simplest.   

2) I examined the 1970s to present data throughout the Columbia River and found 
that the 1980-present data was affected by an especially unusual series of years 
between 1978-1982 or so.  The estimates using the 1980-present time frame 
appeared to be more different that one would expect compared to estimates using 
any other time frame.  My initial analysis suggested that 1976-present would 
generally be a better time frame to use, although this does suffer from dam effects 
in the early years for some stocks.  The 1984-present data could also be used to 
avoid the 1978-82 period, however, a strong argument can be made that this 
overly emphasizes a period characterized by bad ocean conditions. 

 
II.  ACCOUNTING FOR UNCERTAINTY IN RISK ESTIMATES 
Note the review by Drs. Deutschman and Heppell focused on the support for the DH 
method as discussed in Section I above.  The DH method has undergone extensive review 
and has been used a variety of management documents.  In contrast, this section 
represents an initial proposal for integrating uncertainty estimates into management 
decision-making.  What method to use is still an area of active discussion. 

A certain amount of variability in estimated parameters and risk metrics is an 
unavoidable aspect of the analysis of stochastic population processes, simply due to the 
nature of these processes.  Accounting for uncertainty is important when using risks 
estimates for management decisions.  To be able to do this, one first must have a good 
understanding of the uncertainty in the estimated risk metrics.  One of the strengths of 
diffusion approximation methods is that the statistical distributions of the estimated 
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parameters are known.  As a result, the uncertainty in the estimated risks can be 
calculated.  This is often not the case for other PVA approaches.   

There are a variety of approaches that one might use to account for uncertainty.  
One standard method is to simply show confidence intervals, but straight confidence 
intervals give little indication of the level of data support across the interval.  Approaches 
that use the whole likelihood functions the risk metrics, rather than simply the point 
estimates and confidence intervals, will help to clarify the level of data support over a 
range of true risk levels.  Below a statistical decision theory (e.g. Berger 1985 is one of 
many texts on decision theory) framework based on Bayesian posterior probability 
distributions is presented for integrating estimates of the data support for different risk 
levels with the consequences of true risk levels.  Wade (2000) and Dorazio and Johnson 
(2003) provide recent discussions of this Bayesian decision framework in conservation 
biology and resource management contexts.   

The idea in a nutshell is to estimate the probability that the risk metric, for 
example λ, is within particular ranges that are important from a management perspective.  
For example: 

 
< 0.9 0.15 
0.9 – 0.95 0.3 
0.95 – 1.0 0.5 

Probability 
the true λ is 

in these 
ranges > 1.0 0.05 

Table 1.  Estimated probabilities that λ is within different ranges. 
 
These probabilities are estimated using the posterior probability distribution that is 
estimated from the data.  Figure 24 gives an example of the posterior probability 
distribution for λ estimated from a 38-year times series of spring chinook in the Upper 
Columbia River basin (data from T. Cooney, NMFS).  The probability that λ is within the 
range a to b is calculated by integrating the posterior probability distribution between a 
and b. 
 

 
Figure 24.  Estimated posterior probability distribution for λ for Upper Columbia spring 
chinook.  From Holmes (2004). 
 
There are a variety of ways these probabilities could be used.  They might be used 

alone and qualitative thresholds set, such as if the probability that λ is less than 0.95 is 
greater than some threshold, then an such and such actions can (or cannot) occur.  Note 
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that the probability of a low λ can be high due to certainty that λ is low or due to 
uncertainty about λ.  Thus, such a strategy leads to caution in the face of high 
uncertainty.  A more quantitative, decision-theoretic, approach can be taken if the 
probability that actions will be ‘sufficient’ (however that might be defined) can be 
calculated given different true λs.  For example, 

 
 
  Probability of action being ‘sufficient’ 
  Action A Action B Action C 

< 0.9 0.3 0.1 0 
0.9 –0.95 0.5 0.3 0.2 
0.95-1.0 0.8 0.6 0.5 λ range 

> 1.0 1.0 1.0 0.8 
Table 2.  Estimated probabilities of action sufficiency given different true λ ranges. 

 
These probabilities are multiplied by the probability of λ being within those ranges and 
then summed over all ranges to give the total probability that actions are ‘sufficient’.  
This probability incorporates the uncertainty in the estimated λ: 
 

Probability of action being ‘sufficient’ 
Action A Action B Action C 
0.64 0.45 0.35 

Table 3.  Probabilities in Table 2 multiplied by those in Table 1 and summed over all λ 
ranges. 

 
An example where the probabilities in Table 2 would be relatively easy to calculate is 
different harvest levels.  Instead of giving a simple ‘yes/no’ answer as would be the case 
if using point estimates of λ, this approach quantifies the uncertainty in our estimate of λ 
and emphasizes that there is not a simple “100% or 0%” probability of an action being 
effective. 
 Probabilities of crossing thresholds are notoriously uncertain and variable, and 
analyzing the uncertainty connected with a proposed probability metric (e.g. ‘probability 
of extinction’) is especially critical when using these metrics.  Figure 25 shows the 
estimated probability density distributions for the probability of 90% decline within 25, 
50 or 100 years given a 20-year time series with an estimated λ of 1 or 0.93.  The 
distributions when the estimated λ is 1 are fairly flat or U-shaped.  This indicates that 
there is not much information about what the probability of 90% decline is.  The 
estimation of the probability of 90% decline can be improved by using an informative 
prior on the process error.  Twenty years of data is not sufficient for accurate process 
error estimates.  If one argues that the variability driving long-term dynamics is similar 
across chinook throughout the basin, then one might use as an informative prior the 
distribution of process error estimates for a large number of stocks throughout the basin.  
Figure 26 shows how the estimation of the probability of 90% decline improves using an 
informative prior.  Now it appears that estimation of the risk of 90% decline in 50 or 100 
years is fairly informative for the stock with a low λ.  For the stock with a λ equal to 1,  
50 and 100-year probabilities are uncertain, but 25-year probability are much better. 
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Figure 25.  Estimated posterior probability distribution of the probability of 90% decline 
in 25, 50 and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and 
an estimated process error of 0.08 and estimated non-process error of 0.71.  A uniform 
prior on the process error was assumed. 

 



Updated white paper  6.27 

E. E. Holmes 

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

lambda =  1
25  yrs

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

P
ro

ba
bi

lit
y 

D
en

si
ty

50  yrs

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

Probability of 90% decline

100  yrs

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

lambda =  0.93
25  yrs

0.2 0.4 0.6 0.8
0

1
2

3
4

5
6

50  yrs

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

Probability of 90% decline

100  yrs

 
Figure 26.  Estimated posterior probability distribution of the probability of 90% decline 
in 25, 50 and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and 
an estimated process error of 0.08 and estimated non-process error of 0.71.  A highly 
informative prior on the process error was assumed. 

 
 These last two figures focus on the probability of 90% decline in 25, 50 or 100 
years.  There are other ways to look at the probability of 90% decline that can be more 
informative.  For example, here is an analysis of the probability of an eventual 90% 
decline for based on the Upper Columbia spring chinook time series (from Holmes 2004).  
The estimated probability of eventual 90% decline is almost 1.0, that is it is almost 
certain to occur (Figure 27, top), however there a great deal of uncertainty as to when this 
will occur (Figure 27, bottom) except that it is highly likely within 100 years.  Figure 27, 
bottom panel, shows the expected probability of 90% decline within a given time frame.  
From the figure, on average there is a 70% probability of a 90% decline within 50 years 
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for this population and an average 80% probability that the 90% decline occurs within 
100 years. 

 
Figure 27.  Estimated posterior probability distribution of eventual 90% decline in the  
Upper Columbia spring/summer chinook (top panel) and the probability that this decline 
has occurred within different time frames (bottom panel).  From Holmes (2004). 

 
The time to 90% decline can then be put into Table form similar to Table 1 for λ ranges 
(Table 4) which can then be combined with a Table similar to Table 2 for the probability 
that an action will be sufficient if 90% decline does not occur until after x years. 

 
> 25 yrs 0.7 
> 50 yrs 0.38 
> 75 yrs 0.2 

Probability 
90% decline 
only after x 

years > 100 yrs 0.18 
 

Table 4.  Probability that 90% decline does not occur until after x years.  From Figure 27, 
bottom panel. 

 
Quasi-extinction threshold versus absolute extinction 

Throughout this paper, the probability of 90% decline is discussed.  The 
probability of 90% can be estimated for stocks for which we only have index data and not 
total spawner information.  Thus it can be more widely applied.  However, decline to 
specific critical population sizes are also of great importance in PVA analyses.  Although 
estimating extinction to 1 individual is a popular risk metric, and unfortunately 
sometimes mandated, caution is required when using the diffusion approximation is to 
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estimate extinction to very low numbers since factors that drive dynamics at very low 
population sizes (such as demographic stochasticity) and the catastrophes often 
associated with ultimate extinction will likely be poorly represented in a time series of a 
relatively larger population declining to low numbers.  There have been a wide variety of 
papers published on this in the conservation biology literature.  The general 
recommendation is to estimate the probability of decline to some critical population size 
(quite a bit greater than 1); this is termed a ‘quasi-extinction’ threshold.  Fagan et al. 
(unpublished manuscript) studied a collection of actual time series of species that went 
extinct and compared diffusion approximations for quasi-extinction thresholds versus 
extinction to 1 individual.  This analysis found that quasi-extinction estimates (to a size 
much greater than 1) using diffusion approximations fit the observed data, but that 
extinction estimates (to 1 individual) were very poor and underestimate the true risk. 

With this in mind, one might ask why was the probability of decline to 1 
individual estimated in the McClure et al. analysis.  The reasons for this were four-fold.  
1) The analysis was focused on estimating risks if current conditions continue as they 
appeared in the time series data.  It was recognized that this would tend to underestimate 
risks if factors such as density-depensation occurred as the population got small, however 
baseline estimates of risks under current conditions are required in order to make 
meaningful statements about risks under hypothetical future scenarios, such as lower 
population growth rates as the population gets small.  2)  The probability of 90% decline 
does not incorporate the actual population size.  The implications of a 90% decline of a 
population of 10 individuals is quite different than a 90% decline for a population of 
100,000 individuals.  The probability of decline to 1 individual provided a risk metric that 
incorporated both the overall rate of decline of the population and the population size.  
Thus we could then compare ESUs in terms of a risk metric that integrates these two 
factors –regardless of whether this is an underestimate of the true probability of 
extinction.  3) Any other extinction threshold we could have specified would have been 
arbitrary – given the information we had on critical population size.  Decline to 1 
individual is meaningful for all populations.  4) The Fagan et al. analysis had one notable 
exception, i.e. one population where the probability of extinction would be properly 
estimated.  That was the one population time series that followed an actual salmonid 
extinction (sockeye); the rest of the time series followed bird and reptile extinctions. 
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