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Abstract

We examined how marine plankton interaction networks, as inferred by multivariate autoregressive (MAR)
analysis of time-series, differ based on data collected at a fixed sampling location (L4 station in the Western
English Channel) and four similar time-series prepared by averaging Continuous Plankton Recorder (CPR) data-
points in the region surrounding the fixed station. None of the plankton community structures suggested by
the MAR models generated from the CPR datasets were well correlated with the MAR model for L4, but of the
four CPR models, the one most closely resembling the L4 model was that for the CPR region nearest to L4. We
infer that observation error and spatial variation in plankton community dynamics influenced the model per-
formance for the CPR datasets. A modified MAR framework in which observation error and spatial variation are
explicitly incorporated could allow the analysis to better handle the diverse time-series data collected in marine

environments.

Long-term environmental monitoring data present unpar-
alleled opportunities to understand ecosystem dynamics and
structure in natural settings. Depending on the frequency
and duration of sampling, biomass or count data collected
over time can allow for the characterization of seasonal and
inter-annual variability in abundance patterns, the detection
of changes in community dynamics and composition, and
the modeling of system processes. Time-series data are also
valuable as a basis for determining species interactions
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within communities (Ives et al. 2003; Wootton and Emmer-
son 2005). Estimates of ecosystem function and stability are
commonly generated by assembling and examining the
structure of food webs, but in addition to knowing the pat-
tern of species interactions within an ecosystem, it is impor-
tant to know the strengths of those interactions (e.g., May
1972; Ives et al. 1999; Ings et al. 2009). Estimates of the inter-
action strengths between species within a community can,
for example, be used to infer and understand the direct and
cascading effects of system drivers on that community (e.g.,
Hampton et al. 2008). For marine plankton communities,
the construction of such weighted interaction networks can
give us valuable insights into how stressors such as climate
change and eutrophication affect the trophic base of pelagic
marine systems.

Multivariate autoregressive (MAR) models have been suc-
cessfully applied to long-term plankton abundance datasets
from freshwater systems to define the positions and strengths
of interactions within those communities (e.g., Ives et al.
2003; Hampton et al. 2006; Hampton et al. 2008). However,
the high-resolution, multi-decadal plankton time-series
required for MAR analyses are relatively uncommon for
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marine systems. Also, MAR models have primarily been used
with fixed point sampling data, which may be more variable
in marine environments due to the influences of spatially
dynamic factors such as tides and currents, and much of the
multi-decadal marine plankton monitoring data derive from
samples taken at multiple, spatially distributed points.

The spatially scattered samples collected behind ships-of-
opportunity by the Continuous Plankton Recorder (CPR)
instrument represent a rich source of long-term plankton
abundance data to which MAR analysis could potentially be
applied. The CPR survey was initiated by Alister Hardy in the
1930s following his development of the towable collection
instrument, and the methods have remained consistent since
1948 for zooplankton and 1958 for phytoplankton (Warner
and Hays 1994; Richardson et al. 2006). Over the past 80
years, the CPR survey has collected samples along the routes
of ships-of-opportunity throughout the North Atlantic and
North Sea, making it the longest and most geographically
wide-spread marine plankton data source currently in exis-
tence. The long temporal and large geographic range of the
dataset make it a valuable resource, but questions regarding
the sampling methodology of the CPR have arisen over the
years (Hays and Warner 1993; Hays 1994; Clark et al. 2001;
John et al. 2001).

These concerns have prompted researchers to assess the
comparability of CPR data to data collected at fixed stations
with common vertical net haul methods. For example, Clark
et al. (2001) compared plankton data taken at the Dove
Marine Laboratory sampling station to CPR data taken from
the surrounding area in the central-western North Sea. They
found that fluctuations in year-to-year relative abundances of
dominant taxa as well as community composition shifts were
well-correlated between the two datasets. However, their com-
parison of absolute abundances between the two data-series
revealed that the CPR captured roughly 15 times fewer indi-
viduals than the net samples at Dove, with some taxon-spe-
cific variability. They suggested that most of the abundance
discrepancies might be attributed to passive avoidance and
some species having more effective escape responses against
the small CPR entrance aperture relative to larger sampling
nets. Similarly, John et al. (2001) compared plankton time-
series taken at the Western Channel Observatory (WCO) L4
station to CPR data taken in the surrounding area in the Eng-
lish Channel. They focused on comparing abundance patterns
of locally common copepods between the two datasets.
Although absolute copepod abundances were notably lower in
the CPR dataset by a factor varying by species from 2 to 35,
they found good agreement between seasonal patterns of
copepod abundance in the two datasets. There is therefore
good evidence that, despite the tendency of the CPR instru-
ment to under-sample absolute zooplankton abundances, the
relative seasonal and inter-annual abundance trends deter-
mined from CPR samples are reliable (Batten et al. 2003;
Richardson et al. 2006).
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Point versus spatial data MAR models

Since fixed point marine data may be heavily influenced by
patchiness, and spatially distributed data like those collected
by the CPR represent an enormous resource for the study and
management of marine systems, we would like to better
understand how MAR models behave with these types of data.
Here we compare the plankton community properties that can
be inferred from MAR analysis on fixed point data to those
from spatially distributed points in the surrounding area. We
selected the plankton time-series dataset collected at the WCO
L4 station to represent fixed point data and used CPR sam-
pling points from the surrounding area in the English Chan-
nel to represent spatially distributed data. The L4 and CPR
datasets were selected for MAR analysis due to their high tax-
onomic and temporal resolution, relative longevity, consistent
collection methodologies, and inclusion of phytoplankton
abundance data. We did not expect the lower estimations of
absolute plankton abundances from the CPR relative to net
samples to significantly influence the MAR analysis because
the model uses trends in standardized abundance rather than
absolute abundance to detect interactions between taxa (see
below). However, we did expect that variance in the time-
series caused by the dramatically different sampling schemes
and by potentially high and disparate observation errors could
lead to model differences between the datasets.

Materials and procedures

WCO L4 data

The Western Channel Observatory (WCO) is a marine-
monitoring program based at the Plymouth Marine Labora-
tory, Plymouth, UK. WCO has monitored zooplankton abun-
dance in the English Channel since 1988 and started
collecting phytoplankton abundance data in 1992. Samples
have been collected weekly in 55-m-deep water, 18.5 km
southwest of Plymouth at the L4 station (Fig. 1). Zooplankton
samples are collected by replicate vertical WP2 net (200 pm
mesh size, 0.25 m? mouth area) hauls from 50 m to the surface
and are stored in 5% formalin (Eloire et al. 2010). Within a
week of collection, zooplankton are enumerated and identi-
fied to major taxonomic group under a dissecting microscope.
Phytoplankton bottle samples are collected at 10 m depth and
preserved in 2% Lugol’s solution (Southward et al. 2005). An
inverted microscope is used to identify and enumerate phyto-
plankton species in 10-100 mL settled subsamples. WCO L4
data are freely available at www.pml.ac.uk/L4.
CPR data

The Continuous Plankton Recorder survey has been col-
lecting consistent monthly samples along ship tracks in the
English Channel since 1957 (Southward et al. 2005). The
device is towed at a speed of 15-20 knots behind ships of
opportunity at approximately 6-7 m depth (Batten et al.
2003). As it is towed, water enters a 1.27 cm? aperture at the
front of the device and passes through an exposed portion of
a silk mesh strip (~270 pm mesh size). An external propeller
drives a winding mechanism that exposes the mesh strip to
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Fig. 1. Map of the L4 station location (50.25°N, —4.22°W) and the regions CPR sampling points were averaged over to create monthly time-series (CPR,,
49.5°N/50°N to 50.5°N, —3°W to -5°W; CPR,, 49°N/49.5°N to 50.5°N, -3°W to -5°W; CPR,, 48.5°N/49°N to 50.5°N, -3°W to -5°W; CPR,, 48.5°N to

50.5°N, -2.3°W to -5.7°W). Small black spots represent CPR sampling points.

the incoming water sample at a continuous rate of about 10
cm per 10 nautical miles. Another strip of silk covers the cap-
tured particles, and the sandwiched layers are wound on a
spool in a tank containing ~4% buffered formalin. When the
CPR is returned to the laboratory, the silk is cut into sections
corresponding to 10 nautical mile samples. Zooplankton and
phytoplankton in every other sample strip are identified and
counted during a three-stage microscopic processing proce-
dure, and abundance estimates are derived from the counts
(Warner and Hays 1994; Batten et al. 2003).

For this study, we acquired CPR point data spanning the
English Channel from the Sir Alister Hardy Foundation for
Ocean Science. Four regions were selected over which to aver-
age the CPR sampling points. Three of these CPR regions
expand southward from L4 (CPR,, CPR,, CPR;; Fig. 1) and were
selected to determine whether the proximity of the CPR sam-
ples to the fixed station affects the similarity of the model
results. These regions are nested rather than adjacent because
separating them would have critically reduced the number of
time-steps available for our analysis. A large region, denoted
CPR, (Fig. 1), was selected to assess whether model results can
be improved by maximizing the number of spatial replicates
included in the time-series.

MAR analysis

To enable direct comparisons between L4 and CPR datasets,
plankton taxa were summed into groups that are ecologically
or functionally similar (Table 1). We excluded groups that
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were counted in L4 samples but recorded only as “present or
absent” in the CPR samples, that were extremely rare, and that
were comprised of small-bodied species that were unlikely to
have been accurately sampled by either of the methods (Eloire
et al. 2010). We assembled parallel L4 and CPR abundance
time-series for the plankton groups under consideration by
averaging each dataset into 1-month increments and remov-
ing time steps not shared among all datasets. For each of the
CPR region datasets, raw sample data were averaged by date
before calculating monthly means.

To prepare the datasets for MAR analysis, the monthly
plankton abundance values were log,,(x + 1) transformed and
standardized to dimensionless units (Z-scores; e.g., Hampton
et al. 2006). A Z-score for each monthly time step was calcu-
lated by first subtracting the group’s corresponding multi-year
mean abundance value for the month, and then dividing the
difference by the multi-year standard deviation for the month.
Z-scoring standardized the data such that we could directly
compare model results among plankton groups and also
removed average seasonal trends from the time-series. Desea-
soning the abundance data should theoretically aid in the
detection of interactions between plankton groups by damp-
ening seasonal successions that relate to seasonally varying
abiotic drivers. All the dataset manipulations described above
were performed in R.

In the MAR model framework, both variates and covariates
can be included in the analysis (Ives et al. 2003). Variates are fac-
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Table 1. Summary of zooplankton aggregations applied to the L4 and CPR datasets, each group’s contribution to the total plankton
community, and each taxon'’s contribution to its group. Taxa comprising less than 1% of a group are not listed.

Proportion of community

Proportion of group

Group L4 CPR Taxa Included L4 & CPR mean
Chaetognaths 0.02 0.07 Sagitta spp. ~1.00
Pteropods 0.01 0.02 Thecosomata >0.99
Tunicates 0.03 0.07 Appendicularians 0.99
Doliolids 0.01
Cladocerans 0.05 0.04 Evadne spp. 0.66
Podon spp. 0.34
Amphipods <0.01 <0.01 Gammarid amphipods 0.94
Hyperiid amphipods 0.03
Isopods 0.02
Mysid shrimp 0.01
Krill <0.01 <0.01 Euphausiids ~1.00
Copepods
Large calanoids 0.03 0.08 Calanus spp. 0.95
Metridia spp. 0.03
Candacia spp. 0.01
Eucalanus spp. 0.01
Small calanoids 0.38 0.45 Pseudocalanus spp. 0.33
Acartia spp. 0.28
Temora spp. 0.15
Paracalanus spp. 0.12
Centropages spp. 0.06
Clausocalanus spp. 0.02
Ctenocalanus spp. 0.01
Cyclopoids 0.12 0.02 Oithona spp. ~1.00
Poecilostomatoids 0.19 0.01 Corycaeus spp. 0.51
Oncaea spp. 0.49
Harpacticoids 0.01 <0.01 Euterpina spp. 0.70
Clytemnestra spp. 0.23
Microsetella spp. 0.05
Alteutha spp. 0.01
Meroplankton
Cirripedia 0.08 0.01 Cirripede larvae 1.00
Mero. Grazers (miscellaneous) 0.06 0.23 Echinoderm larvae 0.66
Bivalve larvae 0.19
Cyphonaute larvae 0.05
Polychaete larvae 0.05
Gastropod larvae 0.04
Decapod larvae 0.01 0.01 Crab & shrimp larvae 1.00

tors expected to affect their own dynamics and the dynamics of
other variates (e.g., species abundances are typically treated as
variates). Covariates may affect the dynamics of the variates but
are unlikely to be correspondingly influenced by them (e.g.,
temperature or salinity would be treated as covariates). With the
exception of meroplankton, we considered each plankton
group as a variate in the model. Meroplankton groups were con-
sidered covariates since their abundance can be strongly influ-
enced by benthic, rather than pelagic, processes.
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The MAR framework (Ives et al. 2003) can be thought of as
a series of regression equations which compare the abundance
time-series of each plankton group to the t-1 lagged time-series
of all other groups and any included covariates. In matrix
notation, the MAR formula we used is

X,=A+BX _ +CU_ +E (1)

where, for p interacting groups and q covariates, X, isa p x 1
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vector of the groups’ Z-scored abundance values at time £, A is
a p x 1 vector of intrinsic productivities (all equal to zero here
because we are using Z-scored values), B is a p x p matrix of
interaction coefficients, X , is a p x 1 vector of the biomass for
each group at time ¢-1, C is a p x g matrix of effects of covari-
ates on variates, U, is a g x 1 vector of covariates at time t-1,
and E is a p x 1 vector of process errors with mean 0 and vari-
ance-covariance matrix Q. The diagonal elements of B contain
the density-dependent interaction terms of each variate on
itself; the off-diagonal elements are the effects of the plankton
groups on one another.

Following Ives et al. (1999), we used Akaike’s Information
Criterion (AIC) to evaluate the fit of a suite of potential mod-
els that could be constructed from each dataset. To find the
“best-fit” model structure for each dataset, we randomly con-
structed 100 model structures by including or excluding coef-
ficients of B and C with equal probability, and chose the
resulting model with the lowest AIC. The process was repeated
100 times (Ives et al. 1999), resulting in a single model struc-
ture with the lowest AIC of 10,000 random models. Coeffi-
cients that were retained in less than 15% of the models were
dropped (Ives et al. 1999). We then used bootstrapping (n =
500) of the best-fit model to obtain 95% confidence intervals
for the coefficients. Coefficients with confidence intervals that
overlapped zero were eliminated, resulting in the final “boot-
strapped” model (Hampton and Schindler 2006; Hampton et
al. 2006). The fitting and selection of MAR models was imple-
mented in Matlab.

MAR model comparisons

When analyzing the L4 and CPR datasets with MAR, we
found that, due to the random search used to determine the
best-fit (lowest AIC) model, the same dataset could generate
slightly different models if the analysis was repeated. Due to
this variability, rather than compare single models generated
from each of the five datasets, we generated 10 replicate MAR
models for each dataset. We compared the best-fit and boot-
strapped B and C interaction matrices between the L4 and CPR
datasets with Kendall’s rank correlation (t) in R. The 10 repli-
cate models for each dataset resulted in 100 pairwise tests
being done for each L4 to CPR comparison, so we used the
mean t- value (+ the 95% confidence interval; bootstrap n =
500) from each set of tests as a measure of model similarity.
Time-series comparisons

We evaluated similarities and differences between the
untransformed L4 and CPR abundance time-series for refer-
ence during comparisons of the final MAR models. To com-
pare absolute abundances between the datasets, the single,
overall mean abundance of each plankton group in each time-
series was calculated. These means were compared as ratios of
L4:CPR abundance for each plankton group, such that ratios
greater than 1 would be indicative of more individuals being
sampled in the L4 time-series. We also looked for correlations
in relative abundance trends between the untransformed L4
and CPR monthly time-series. Trend similarities for each
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plankton group between the L4 and CPR time-series were esti-
mated with Kendall’s rank correlation as the Poisson distribu-
tion of the count values did not satisfy assumptions of para-
metric correlation estimates. All time-series comparison
calculations were done in R.

Assessment and discussion

MAR results comparisons

The plankton community structures implied by the MAR
analyses of the five data sets differ dramatically. The best-fit
MAR model B-matrix (species interactions) and C-matrix
(covariate effects) for each of the five datasets are plotted in
Fig. 2, and the corresponding bootstrapped matrices are plotted
in Fig. 3. Of 238 total potential interactions, the bootstrapped
matrices retain 28 of the 66 non-zero interactions in the best-fit
L4 model, 21 of the 48 non-zero CPR, interactions, 29 of 60
CPR, interactions, 29 of 67 CPR, interactions, and 25 of 63 CPR,
interactions. All other interaction coefficients in the models
were 0. Comparisons of the model results, both before (Fig. 2)
and after (Fig. 3) bootstrapping, show that very few (3-15) non-
zero interactions are shared among the models generated from
the L4 and CPR time-series (Table 2). The correlation coeffi-
cients between the bootstrapped L4 model and CPR models, in
which less certain interaction estimations were eliminated, are
all low, with the highest correlation being between the L4 and
CPR, region models (t =0.142 £ 0.006; Table 2).

Although applying the bootstrap to the best-fit models
should theoretically help narrow the non-zero model coeffi-
cients to those representing stronger, ecologically plausible
interactions—thereby creating better agreement between
models—no patterns of agreement emerged. For example, in
the bootstrapped model results (Fig. 3), 9 out of 14 variate
groups in the L4 data were diagnosed as having significant
density dependence (coefficients along the B-matrix diago-
nal), but this within-group autocorrelation was only detected
for 6 of the 14 groups in the CPR models. Only 4 of these den-
sity-dependent interactions occurred in both the L4 and the
majority of CPR bootstrapped models (large and small
calanoids, tunicates, and the poecilostomatoids). All of the
bootstrapped models generated include unlikely interactions
between plankton groups (e.g., positive effects of grazers on
phytoplankton). Such implausible interactions could result
from a variety of factors, including indirect biotic interactions,
temporally staggered responses of taxa to a shared driver, or
the successive sampling of different water masses with distinct
communities. However, the L4 model contains fewer of these
unlikely interactions and more non-zero values for density
dependence along the B-matrix diagonal (Fig. 3), so in this
case, it appears MAR results are better aligned with our eco-
logical expectations when using the fixed point data collected
at L4 versus the spatially distributed data collected by the CPR.
Time-series comparisons

CPR under-sampling is apparent for several of the plankton
groups when mean abundances from the CPR datasets are
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Fig. 2. Best-fit B- and C-matrices for the L4, CPR,, CPR,, CPR,, and CPR, datasets. Each bar represents an interaction coefficient estimate, where a posi-
tive (negative) coefficient indicates a positive (negative) effect of the corresponding column group on the corresponding row group. The B-matrix column
group abbreviations correspond, in order, to the row group names, and the C-matrix columns represent the cirripedia, meroplanktonic grazer, and deca-
pod larvae groups. The x-axis range is 0.7 to 0.7, with origin 0. Only interactions included in all 10 replicate best-fit models of each dataset are shown.

compared with L4 mean abundances (Fig. 4). Comparisons of
the abundance ratios reveal that this sampling effect varied by
group. The lowest ratios (<5) are seen for zooplankton groups
containing species of relatively large body size (>2 mm length).
Very large ratios (>10) for harpacticoid, cyclopoid, and poe-
cilostomatoid copepods indicate that dramatically more indi-
viduals from these small-bodied groups (<1 mm body length)
were captured by the vertical net hauls at L4. For some groups,
there appear to be increasing (e.g., pteropods) or decreasing
(e.g., harpacticoids) CPR abundance trends with increasing
region distance from L4 (Fig. 4). The large abundance ratios for
the phytoplankton groups are not surprising since small phy-
toplankton were captured by the L4 bottle samples but were
able to pass through the 270 pym mesh used by the CPR.
Temporal abundance trends between the L4 and CPR
datasets are significantly correlated for most of the zooplank-
ton and phytoplankton groups (P < 0.01; Table 3). Abundance
trend correlations are strongest for the cladoceran, dinoflagel-
late, chaetognath, and meroplanktonic grazer groups (tr >
0.40). The weakest correlations are associated with the ptero-
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pod, harpacticoid copepod, amphipod, krill, cirripedia, and
poecilostomatoid groups (t < 0.20).
Why do MAR results differ among datasets?

Reasons for the differences between the L4 and CPR MAR
models are suggested by comparisons of the L4 and CPR
plankton abundance time-series and by examining the model
B- and C-matrix results for each of the datasets. Differences
between sampling equipment, sampling design, and the spa-
tial scale over which samples were collected are all likely to
have contributed to discrepancies among the L4 and CPR
data-series which led to differing MAR models. Since the CPR
data are best averaged over coarser temporal and spatial scales
than we used in this study (Richardson et al. 2006), it is possi-
ble that spatially distributed plankton data collected under
different sampling regimes could be used to construct inform-
ative MAR models if sources of variance at different spatial and
temporal scales were carefully considered.

Sampling device effects

A comparison of the L4 and CPR datasets revealed that the

CPR abundance estimates for several plankton groups are
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Fig. 3. Bootstrapped B- and C-matrices for the L4, CPR,, CPR,, CPR,, and CPR, datasets. Each bar represents an interaction coefficient estimate, where a pos-
itive (negative) coefficient indicates a positive (negative) effect of the corresponding column group on the corresponding row group. The B-matrix column
group abbreviations correspond, in order, to the row group names, and the C-matrix columns represent the cirripedia, meroplanktonic grazer, and decapod
larvae groups. The x-axis range is 0.7 to 0.7, with origin 0. Only interactions included in all 10 replicate bootstrapped models of each dataset are shown.

Table 2. Numbers of shared interactions and correlations (+95% confidence interval) of the L4 best-fit and bootstrapped models with
each of the corresponding CPR,, CPR,, CPR,, and CPR, models.

Best-fit models Bootstrapped models
Dataset Total coefficients Non-zero Correlation Total coefficients Non-zero Correlation
comparison shared interactions shared ¢ (x95% Cl) shared interactions shared ¢ (x95% Cl)

L4 versus CPR, 147 9 0.103 (+0.004) 198 0.142 (+0.006)
L4 versus CPR, 142 1 0.067 (+0.003) 191 0.109 (+0.006)
L4 versus CPR, 140 15 0.111 (£0.004) 190 0.069 (+0.007)
L4 versus CPR, 142 13 0.079 (+0.003) 195 0.125 (+0.008)

A W A N

much lower than abundances estimated from L4 samples (Fig. ance (Clark et al. 2001), and different sampling depths relative
4). These findings are in agreement with Clark et al. (2001) and to species depth distributions (John et al. 2001).

John et al. (2001), who found that the CPR appeared to under- In our analysis, the comparatively low abundance of small-
sample certain taxa and species in comparison to samples col- bodied organisms in CPR data are likely related to the larger
lected with vertical net hauls at fixed stations. This phenome- mesh size. Even so, because the MAR model relies on trends in
non could be caused by a variety of factors, such as mesh size standardized abundance values rather than absolute abun-
differences, interspecific variability in sampling device avoid- dance values, it is unlikely the abundance differences between

60
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Fig. 4. Ratios of mean L4 plankton abundances to mean CPR,, CPR,, CPR,, and CPR, plankton abundances. Bars extending left of the origin represent
increasingly low plankton abundances in the CPR datasets relative to the L4 mean abundances. The x-axis is on a log scale.

Table 3. Kendall’s rank correlation t-values for plankton group abundance trends between the L4, CPR,, CPR,, CPR,, and CPR, data-
series. All relationships are significant (P < 0.01) unless otherwise noted.

Group L4 versus CPR, t L4 versus CPR, © L4 versus CPR, © L4 versus CPR, ©
Cladoceran 0.55 0.58 0.58 0.60
Dinoflagellate 0.51 0.54 0.54 0.51
Chaetognath 0.48 0.44 0.46 0.47
Mero.grazers 0.41 0.41 0.41 0.42
Diatom 0.38 0.40 0.40 0.40
Tunicate 0.35 0.37 0.39 0.40
Malacostraca.mero 0.37 0.38 0.36 0.37
Copepod.calanoid.small 0.35 0.34 0.37 0.36
Copepod.calanoid.large 0.26 0.33 0.33 0.35
Copepod.cyclopoid 0.25 0.29 0.27 0.26
Other phytoplankton 0.22 0.22 0.21 0.23
Copepod.poecilostomatoid 0.19 0.16 (P =0.02) 0.15 (P=0.02) 0.21
Cirripedia 0.15 (P =0.05) 0.17 (P=0.02) 0.17 (P=0.02) 0.19
Malacostraca.pelagic 0.12 (P=10.12) 0.19 (P=0.01) 0.17 (P =0.02) 0.16 (P =0.04)
Malacostraca.benthic 0.12 (P =0.08) 0.13 (P =0.06) 0.17 0.17
Copepod.harpacticoid 0.10 (P=0.17) 0.13 (P =10.08) 0.13 (P=0.07) 0.10 (P=0.17)
Mollusca.pelagic 0.04 (P =10.58) 0.09 (P=0.18) 0.05 (P=0.43) 0.15 (P =0.02)
Mean + SE 0.29 £ 0.04 0.30 £ 0.04 0.31 £ 0.04 0.31 £0.03
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the datasets would have directly led to the poor model agree-
ment we observed. It is, however, possible that error associated
with sampling low numbers of individuals affected the MAR
results. Accurately sampling plankton abundance becomes
less likely with increasing species patchiness or rarity (Wiebe
1971). Abundance estimates for less common plankton groups
can therefore be expected to include more error, which could
have led to discordant abundance trends between the L4 and
CPR datasets and consequently differing MAR results. This
hypothesis is supported by our comparison of relative plank-
ton abundance trends between the L4 and CPR datasets (Table
3), which revealed that correlations tended to be weakest for
groups less common in the plankton communities (Table 1).
Sampling design effects

The dissimilarity of sampling schemes between the L4 and
CPR monitoring programs is also likely to have contributed to
disagreements in plankton abundance trends and MAR results
between the datasets. The vertical-only sampling scheme
employed at the L4 station and the horizontal-only sampling
scheme of the CPR could have produced different abundance
trend estimations even if the sampling equipment, location,
and times had been identical. As a fixed station, L4 could
experience sudden changes in plankton abundance and com-
munity structure due to the horizontal movement of water
masses by tides, winds, and circulation patterns (Irigoien and
Harris 2003; Eloire et al. 2010). For example, L4 is known to be
influenced periodically by riverine inputs from the Tamar
estuary (Smyth et al. 2010). The MAR model may be suscepti-
ble to erroneously interpreting community changes associated
with such water mass movements as plankton group interac-
tions, thereby producing misleading results from fixed point
sampling data (Francis et al. unpublished).

The horizontal CPR sampling scheme would better
account for changes in plankton abundance between mov-
ing water masses, but it does not capture the strong vertical
heterogeneity that can occur in plankton distributions (John
et al. 2001). Many zooplankton species will position them-
selves in the water column in relation to horizontal features
such as chlorophyll maxima or pycnoclines (e.g., Fernandez
de Puelles et al. 1996). Shifts in the depth distributions of
these features could cause misleading peaks and declines in
the CPR plankton abundance data, and taxon-specific
responses to the presence of horizontal features could con-
found the abundance relationships MAR uses to calculate
interaction strengths. Many taxa also perform diel vertical
migrations that can cause their mean depth distributions to
change dramatically between light and dark hours. Although
the CPR does sample during both day and night, the depths
to which species migrate are not always fixed and may
change according to factors such as season, lunar cycle,
water clarity, and food availability (see Marcus and Scheef
2010 for review). Variability in the CPR data introduced by
the changing depth distributions of species may be
smoothed when averaging data points over coarse time
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scales to determine mean seasonal or inter-annual trends in
species abundance (Richardson et al. 2006), but we averaged
the data into one-month increments to generate the time
steps we used in the MAR model. More variability caused by
inconsistent plankton distributions at fine temporal scales
may have been maintained in the CPR time-series we used
and affected the model results.

Spatial scale effects

In the five datasets that we examined, the spatial scale of
sampling increases from L4 (smallest) to CPR, (largest; Fig. 1).
Although averaging data collected over larger areas may buffer
variance due to spatial patchiness, if marine plankton commu-
nity dynamics (i.e., the process) vary by location, MAR analy-
sis on averaged data from large areas may not reflect specific
interactions among plankton. It is also possible that spatial-
temporal interactions, such as the drifting of patches, could
have affected the MAR results for the different CPR regions.
The division of the CPR data into multiple, increasingly large
regions was an attempt to explore the interaction between
temporal components of variance (isolated at the L4 sampling
location) and the increasing influence of spatial components
of variance (Kratz et al. 1995; Larsen et al. 2001).

Our comparisons of the L4:CPR mean abundance ratios
indicate some plankton groups tended to be either more or
less abundant closer to L4 (Fig. 4). If we assume that the inter-
actions among groups change across space as well, one could
expect correlations between the CPR and L4 models to
increase as the area considered converges on the L4 footprint.
The decreasing similarities of the increasingly large CPR,,
CPR,, and CPR, regions’ models to the L4 model (Table 2)
appear to support the expectation that the larger CPR, and
CPR, regions were more likely to span multiple distinct plank-
ton communities that exhibited different localized dynamics
across the Channel. Unfortunately, data sparseness limited the
choice of smallest CPR region, and all of the correlations were
weak at best (Table 2).

Although the similarities of the CPR models to the L4
model decrease with increasing region size from CPR, to CPR,,
the model generated by the largest CPR region, CPR,, was
approximately as well correlated with the L4 model as the one
for the smallest CPR region was. This pattern may reflect the
potential tradeoff between incorporating location-specific
environmental variability (minimizing inclusion of disparate
process errors) and accounting for spatial variability (reducing
observation error) in the data-series (Richardson et al. 2006).
While more sources of spatial variance may be encompassed
by averaging CPR data over larger areas, more observations are
also captured. The mean CPR, sampling point distance to L4
was nearly twice that of CPR, (93 km and 48 km, respectively),
but CPR, also included nearly three times as many sampling
points as CPR, (1652 points and 575 points, respectively). Spa-
tial coverage and environmental heterogeneity therefore
appear to be important factors to jointly consider when aver-
aging spatially scattered data points for MAR analysis.
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Comments and recommendations

Fixed point and spatially distributed sampling designs pose
different advantages and limitations for using either type of
data to characterize plankton community interactions and
properties from MAR models. In this study, the MAR interac-
tion matrices generated from the fixed point L4 and the spa-
tially distributed CPR data-series differed greatly. More work is
currently underway to understand the behavior of MAR with
different marine plankton datasets and to improve the per-
formance of MAR over a variety of data types. Modifications
to the model may help yield more consistent and reliable
results from the highly variable data collected in dynamic
marine environments. For example, a state-space version of
the MAR model (MARSS) that explicitly accounts for observa-
tion error has recently been developed (Holmes et al. 2010). If
observation error was a principal factor affecting the L4 and
CPR MAR results in this study, as we suggest, such modifica-
tions to the MAR framework may better enable us to construct
accurate plankton interaction networks from data collected
with a wide range of different sampling techniques.
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