Patterns of first-
passage probabilities
IN population monitoring
data






Confronting the theory with data
(Holmes & Fagan 2002)

e 141 chinook and 41 steelhead 30-70 year time series
from ESUs in WA, OR, and CA
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Corrupted Diffusion Approximation (CDA)
really a ‘Corrupted Random Walk Model’

log(N,,,) =blog(N,) + u+¢,,
Iog(yt+1) — Iog(Nt+l) + gt+l,np
&, ~ Normal(0,07;)
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No density-dependence
I.l.d. errors -> no auto-correlations
Holmes (2001)



Theory makes a prediction about the distribution of mu_hat
*random walk
*N_t+1/N_t variance is related in a particular way to mu_hat
variance
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Similarly theory makes a prediction about the specific
distribution of s_hat
that we should observe

pdf of &




But...

Problem: don’t view the same population
process over and over

Actual data: many different processes
with different underlying parameters
(growth rates and variability)

Solution: transform data to a standardized
metric that has the same normalized
statistical distribution for all processes



Standardized pu distribution
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Standardized o distribution
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Results for o

Predicted log F
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The ‘x 1’ doesn’t work. Changed to Hist f actual
‘X ¢ and ¢ is about 0.7. Variance is stogram ot actia

going up as pop size goes down. F statistics




First passage patterns: predicted versus observed

Expected vs. Observed Fraction
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Let’'s look at some different data
and a different study...
This data has a lot less non-
process error



117 Time series 20-50 yrs long
/2 are listed species

O Birds

@ Mammals
W Reptiles
l Insects

B Amphibs
W Fish




Distribution of process error estimates
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JUCN Red List Criteria

o Criteria A2: “A reduction of at least xx%,
projected or suspected to be met within the next
XX years....”

« Criteria C1: “Population estimated to number
less than xx and an estimated continuing decline
of at least xx% within xx years....”

e Criteria E: “Quantitative analysis showing the
probability of extinction in the wild is at least xx%
within xx years...”



Cross-validation
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Proportional Declines

Actual versus Predicted Declines
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Estimated 75% decline risk vs Predicted accumulated 75%
actual 75% decline declines versus actual
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Estimated 90% decline risk vs
actual 90% decline
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precision versus bias

 Once again 3 parameter model is
successful at capturing number of
extinctions observed in dataset = low
bias....

e But maybe it's over-estimating low risks
and under-estimating high risks (or visa-
versa) = precise??
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Estimated 75% decline risk vs Predicted accumulated 75%
actual 75% decline declines versus actual
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Estimated 90% decline risk vs
actual 90% decline
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These studies raise a larger
guestion...

* Does there exist a general stochastic
approximation to a very broad class of
population trajectories?

— Something like the stochastic Gompertz
model in form

« How do we go about discovering that?
And demonstrating that that form Is indeed
seen In real population trajectories?



Searching for general approximations for
stochastic population trajectories...

 Building a theoretical foundation

— Does there exist a general equivalent of (Tuljapurkar,
Orzack, Heyde, Cohen)’s results but for population
time series with density-dependence within a
community web? Ives et al. 2004’s result for
derivation of Gompertz model from community
models seems to be a start.

— Can it be shown that the ‘order’ of this approximation
IS time dependent? Conjecture: short time (high
order) = medium time (CDA) - long-time (DA)



Searching for general approximations for
stochastic population trajectories...

e Building a statistical foundation

— Need something akin to a sufficient statistic (parameter-free
metrics) so that we can combine data from many different
populations and study the distribution of those statistics.

— Need to properly condition on observed data.

— Cross-validation involves ‘distribution of suff. statistic’ times
‘distribution of the estimates’. Theoretical pdfs of estimates are
based on approximations, and on the CDA model. The CDA is
merely an approximation for the real process. Do these
approximations hold up with real data?

— Can we delineate the set of equally plausible alternative
explanations? Can we set up tests that can reject alternatives?
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