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Abstract 

Forecasting population decline to critical thresholds (quasi-extinction risk) is one of the 

central objectives in population viability analysis (PVA) and figures prominently in the criteria 

used by major conservation organizations for ranking species.  In this paper, we argue that 

forecasting quasi-extinction risk does not necessarily hinge on knowing the biological details 

underlying the population dynamics.  The stochastic and multiplicative nature of population 

growth means that the ensemble behavior of population trajectories converges to common 

statistical forms across a wide variety of stochastic population processes.  In this paper, we 

provide a theoretical basis for this argument, showing how a variety of complex stochastic 

population processes (including age-structured, metapopulation, and density-dependent) can be 

approximated by a simple stochastic approximation: the stochastic exponential growth process 

overlaid with random Gaussian errors (CSEG).  We use both simulated and real data to show that 

with 20 to 30 years of data, a CSEG model can be estimated that accurately approximates quasi-

extinction patterns.  The simulated data are derived from some of the noisiest population 

processes (density-dependent feedback, interspecies interactions, and strong age-structure 

cycling); yet even for these noisy data, we found that with at least 20 years for parameterization 

the 95% confidence intervals on the quasi-extinction estimates are much less than the full range 

of 0 to 1.  One of the strengths of an approach using theoretically derived statistical models is 

that the parameter uncertainties can be properly specified in a traditional statistical manner, and 

the confidence intervals have traditional statistical interpretations – unlike the ad hoc 

uncertainties presented in many PVAs.  Thus, we argue that meaningful estimates of quasi-

extinction risk are possible even with relatively noisy, albeit not short, datasets.  The existence of 
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parameter-sparse statistical approximations suggests that the key issue is robust parameter 

estimation, rather than any real unpredictability of the quasi-extinction risk itself. 
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“…a typical random mass phenomenon, unpredictable in certain details, predictable in 

certain numerical proportions of the whole.”   

─ George Polya (1968), ‘Mathematics and Plausible Reasoning’ 

 

Introduction 

Population models are a standard tool in both academic ecology and conservation 

science; however, the goals of population models in these two arenas are notably different.  In 

academic ecology, one typically uses population models to infer the biological mechanisms 

underlying a given set of population data.  In conservation science, one constructs a population 

model to forecast future trends based on recent population data; this approach is referred to as 

population viability analysis, or PVA (Boyce 1992; Beissinger & McCullough 2002; Morris & 

Doak 2003).  The key distinction is that while academic efforts typically focus on the causes of 

population dynamics, conservation science attempts to predict their consequences.   

In both endeavors, published research has made increasing use of parameter-rich, 

mechanistic models.  This approach to PVA forecasting has a number of significant pitfalls.  

Most importantly, a mechanistic model can only be specified with detailed and abundant data.  

Such data are typically not available for the populations of concern to conservationists (Morris et 

al. 2002; DeMaster et al. 2004).  Even when some detailed data are available (e.g., age-specific 

survivorship or fecundity), they typically cover too short a duration to specify the annual 

variability of the model parameters.  The result is that either annual variability is not 

incorporated into the model, or that some annual variability must be assumed using (hopefully) 

plausible parameters.  Then there is the problem of determining the uncertainty in the model 

parameters.  Since many parameters are specified rather than estimated from the data, we cannot 
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estimate their uncertainty using traditional statistical methods.  At best, we can perform some 

type of sensitivity analysis.  Because of these basic limitations of the data, managers and policy-

makers who are charged with forecasting populations often recommend against quantitative 

PVAs (DeMaster et al. 2004). 

In this paper, we argue for a different approach to forecasting, one based on the 

convergent random mass properties of stochastic population dynamics.  Random mass properties 

refer to the emergent properties in a large sample of replicates from some unknown stochastic 

process.  As Polya notes in the opening quote, random mass properties can be predictable even 

when the details of the underlying process are unpredictable and/or unknown.  Inference based 

on the random mass properties of population trajectories is very different, both philosophically 

and practically, from inference based on a mechanistic model (Figure 1a).  The latter type of 

inference is the fashion in PVA, while the former is the foundation of classical statistical 

inference.   

To illustrate reasoning using random mass properties, we will first walk though a well-

worn example from statistics: the inference of large sample means (Figure 1b).  Regardless of the 

underlying data distribution, the Central Limit Theorem (CLT) shows that the distribution of the 

large-sample mean is always normal as the sample size n grows.  The normal distribution is a 

convergent mass property, meaning that although the process that generated the data is unknown, 

the distribution of large sample means is known.  Once the existence of a convergent mass 

property has been determined, we need to estimate it from a finite sample.  The CLT again 

guides us here, showing that there is a common relationship between certain properties of small 

samples and the parameters of the limiting normal distribution.  This allows estimation of the 

large sample mean distribution from small samples. 
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Our goal is to extend this type of reasoning to the estimation of a specific random mass 

property of stochastic population trajectories: the probability of decline below a pre-defined 

threshold.  Since this metric does not measure absolute extinction per se, we instead use the term 

quasi-extinction (Morris & Doak 2003).  We focus exclusively on quasi-extinction thresholds 

that are above the level at which demographic stochasticity and Allee effects become important.  

These factors accelerate the decline toward absolute extinction making it differ in fundamental 

ways from the decline to a critical threshold (Lande et al. 2003; Fagan & Holmes 2006).  Quasi-

extinction probabilities are an important risk metric used in policy arenas.  The World 

Conservation Union’s IUCN risk criteria (Mace & Lande 1991) and the proposed quantitative 

criteria for the U.S. Endangered Species Act (DeMaster et al. 2004), for example, both explicitly 

rely on quasi-extinction probabilities. 

The estimation of quasi-extinction risk using convergent random mass properties 

involves synthesizing two bodies of theoretical research (Figure 1c):  the theory of population 

trajectories and their random mass properties, and the estimation of stochastic models from short 

time series.  We begin by integrating multiple avenues of theoretical work to illustrate the range 

of stochastic population models that can be approximated by a stochastic exponential process 

overlaid with Gaussian errors.  It turns out that populations with both density-independent and 

density-dependent dynamics can be approximated by this type of parameter-sparse random walk.  

The quasi-extinction properties of this simple approximation are similar to those of more 

complex, parameter-rich processes, but the approximation depends on only three parameters.  

After reviewing the theoretical basis for these approximations, we present two cross-validation 

studies of quasi-extinction forecasts.  The first is based on simulations of three types of cyclic 

population processes, and the second is based on analysis of a large database of time series from 
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species of concern to conservationists.  We conclude with a discussion of the merits of simple 

stochastic approximations in conservation risk analysis, vis-à-vis the important criticisms that 

have been raised against PVA models. 

 

Random mass models for quasi-extinction 

The quasi-extinction probability is the fraction of population trajectories that cross below 

a specified threshold within a particular time horizon or forecast length (Figure 2a).  The quasi-

extinction probability is a smooth function of the threshold and horizon, which can be displayed 

as a 3-dimensional surface (Figure 2b).  In this paper, we will work with slices of this surface – 

either the probability of hitting a particular threshold across different forecast lengths (Figure 2c) 

or the probability of hitting a range of different thresholds within a particular forecast length 

(Figure 2d).  Our goal is to identify a simple stochastic model that approximates these patterns of 

quasi-extinction risk across broad classes of population processes.   

In this paper, we focus on forecasting expected probabilities 

E[Pr(qe)] = ∫ −−
x

xxxP }),,({...., 012 P(qe in },...,,{ 21 Txxx  | },,{... 012 xxx −− ),               [1] 

where qe is shorthand for quasi-extinction.  In this equation, },,{... 012 xxx −−  are the past 

(observed) population trajectories and },...,,{ 21 Txxx  are the population counts within a particular 

forecast of length T.  }),,({...., 012 xxxP −−  is the probability of the ‘past’ and 

}),,{....,|( 012 xxxqeP −−  is the probability of ‘future quasi-extinction’ given the past.  To 

calculate the expected quasi-extinction probability, we integrate over the set of all possible past 

trajectories.  E[Pr(qe)] is then the average probability of quasi-extinction observed by selecting 
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time series randomly from the set of possible past trajectories, and measures the propensity of the 

process for quasi-extinction.   

 

Random mass properties of density-independent population processes 

Theoretical results on density-independent population processes are based on the study of 

simple random walks.  A simple random walk starts at some Yt and at each time step takes a 

random hop to Yt+1: ξ+=+ tt YY 1 , where the hop length ξ is a random variable.  Our starting 

point for population modeling is a particular random hop model, in this case the stochastic 

exponential growth model (Lewontin & Cohen 1969): 

ttt NN ηµ ++=+ loglog 1                                                   [2] 

Sample trajectories for this type of process are shown in Figure 2a.  The mean population growth 

rate is µ  and the ηt are the year-to-year deviations from that mean.  In this model, the deviations 

might be drawn from any distribution with mean zero and variance 2
pσ . 

Two defining characteristics of linear random walks (like Eq. 1 or 2) are (1) that the 

mean and variance of log Nt+τ /Nt scale linearly with τ  (Figure 2b), and (2) that log Nt+τ /Nt  has a 

normal distribution for large τ (Figure 2c).  Consequently, no matter what is the distribution of 

the errors (the ηt’s) in Eq. 2, a stochastic exponential growth model with Gaussian errors 

emerges as τ gets large (Feller 1968): 

ttt NN εµτ ++=+ loglog ,                                                  [3] 

where ε is drawn from a normal distribution with mean zero and variance 2
pσ .  We will refer to 

this as the SEG model, which stands for Stochastic Exponential growth with Gaussian errors.  

This model will appear repeatedly in the discussions to follow.  An analytical solution to the 
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quasi-extinction surface of the SEG model can be specified using its diffusion approximation 

(Lande & Orzack 1988; Dennis et al. 1991): 

tpt dWtdNd σµ +=)(log ,                                                  [4] 

where Wt is the Weiner process, also known as Brownian motion. 

The SEG is the asymptotic stochastic approximation for several important classes of 

population models.  The first is the class of stochastic, age-structured population models with no 

density dependence: 
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At is the stochastic transition matrix for time t and generally looks something like  
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The f’s and s’s are age-specific fecundities and survival rates at time t, and are random variables.  

As long as the distributions of f and s are reasonably smooth and do not change systematically 

over time, any weighted sum ∑=
i tiit NwN ,  can be approximated by the SEG model at large 

τ  (Tuljapurkar & Orzack 1980; Tuljapurkar 1989; Caswell 2000).  This will be true regardless of 

the specific distributions adopted or any temporal correlations among the parameters.   
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Figure 3 shows an example.  This shows a SEG approximation to a Chinook salmon 

population (Oncorhynchus tshawytscha), following Holmes (2004).  The model has five classes: 

individuals aged 1 to 4 years, plus returning spawners.  The stochastic transition matrix is 
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where si is the age-specific survival, bi is the fraction of class i (= 4 or 5) that enters the spawner 

class, m is the average female fecundity, p is the probability of survival during migration, and εi,t 

is the year-to-year variability.  Figure 3a shows a collection of 50-year time series for the total 

population size simulated with this model (the caption gives values for the parameters).  In this 

illustrative example, the total population at each time step was specified as ∑=
i tiit NwN , , 

where wi is the reproductive value of age i.  The SEG approximation often works much better 

with this type of weighting.  Each simulation was run for 100 years before we began plotting the 

50-year trajectories; this is a simple numerical method for starting each simulation at a randomly 

selected point from the stochastic equilibrium.   

The total population counts from this age-structured process show all the key statistical 

patterns of a SEG process.  The mean and variance of log Nt+τ /Nt scale linearly with τ, and the 

variance passes through the origin as expected (Figure 3b).  The long-term distributions log 

N10 /N0 and log N50 /N0 both have an approximately normal distribution (Figures 3c,d).  An 

appropriate SEG for this example can be specified from plots of the mean and variance as a 

function of τ (Figure 3b), and Figures 3e,f show that this two-parameter SEG model closely 

approximates the quasi-extinction surface of the salmon population trajectories.  SEG 
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approximations for a variety of other structured population processes are shown in Tuljapurkar 

and Orzack (1980), Caswell (2000), Holmes (2001), Morris and Doak (2003), and Holmes 

(2004). 

A second important class of stochastic models for which the SEG is a good asymptotic 

approximation is the class of metapopulation models with continuous, density-independent 

dynamics (Holmes & Semmens 2004).  In this model, each local population i has its own 

stochastic local growth function as well as a stochastic dispersal function describing migration to 

and from other populations: 
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where zi,t is the stochastic growth of local population i in year t and can be drawn from any 

smooth statistical distribution.  Some fraction di,t of individuals emigrates from local population i 

at year t (and similarly dj,t individuals emigrate from local population j).  The rate of immigration 

into local population i is given by summing the fractions αji,t of dispersers from each of the other 

populations j.  No constraints need be placed on the distributions of the growth and dispersal 

parameters (the z’s, d’s, and α’s) or their temporal correlations.  Equation 8 is quite general, 

allowing some sites to be sources (zi > 0), sinks (zi < 0), dispersal sources, or dispersal targets.  It 

can be used to model any spatial pattern of dispersal, any system of (spatially or temporally) 

correlated local growth rates, and any combination or pattern of patch sizes.  Large patches can 

be created by specifying a collection of local populations with full dispersal between them.  The 

model also allows for some anisotropy in the dispersal, as long as all sites are connected to some 

degree to ensure that the transition matrix A (in Eq. 10) is ergodic. 

This metapopulation model can be written succinctly as 
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In this model, the matrix At encapsulates both dispersal and local growth:  
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The t subscripts on the d’s, α’s, and z’s have been dropped to remove clutter; the subscript on the 

matrix symbol reminds us that its elements are time-dependent.   

A projection of this model forward in time results in a product of ergodic random 

matrices (the At’s).  This metapopulation model thus falls into a class of stochastic models whose 

random mass properties have been well studied (Furstenberg & Kesten 1960).  Existing 

theoretical work shows that the logarithm of the total metapopulation size, 

∑ ++ = ττ tit NM ,loglog , will be asymptotically normal, with a variance and mean that scale 

linearly with τ (Holmes & Semmens 2004): 

),(normal/log 2
mmttt MM τστµτ ∞→+ → .                                        [11] 

Again, these are the key properties of an SEG model.  Figure 4 shows the SEG approximation 

for quasi-extinction risk in a simulation of this model with 49 heterogeneous sites connected by 

directional dispersal rates (of 5-25% per year).  The sites had different propensities to produce 

dispersers, and different local growth rates. 



13 

 In the SEG there is only one type of variance affecting log Nt+τ /Nt: the variance in which 

one random fluctuation builds upon the last and the variance in log Nt+τ /Nt continually grows as 

τ increases.  In population modeling, this type of variability is termed process error.  There is 

another type of variability, termed non-process error, which does not feed into the next year.  In 

this case the population counts, called Ot for observed counts, appear to be produced by an 

unseen underlying process Nt that is overlaid with an independent source of variability: 

ττ ε

ε

++ +=

+=

tnptt

tnptt

NO

NO

,

,                                                         [12] 

Non-process error typically arises from some internal feedback in the dynamics that causes 

periodicity.  This type of variability does not continually grow as τ increases. 

If we combine the SEG with a pure non-process error model (Eq. 12), we obtain a 

corrupted stochastic exponential with Gaussian errors (CSEG): 

tptt NN ,1 loglog εµ ++=+                                                     [13a] 

1,11 loglog +++ += tnptt NO ε .                                                 [13b] 

The Nt represent an unobserved population dynamic driven only by process error.  The process 

error εp,t is a normally distributed variable with mean zero and variance 2
pσ  -- like for the SEG, 

this normality arises due to the multiplicative nature of process errors.  The Ot are the observed 

counts corrupted with non-process error.  For this paper, we approximate these errors using a 

normal distribution with mean 0 and variance 2
npσ ; the non-process errors produced by common 

types of population feedbacks are often normal or quasi-normal although decidedly non-normal 

cases also exist.   



14 

The CSEG is a three-parameter model with all the properties of a SEG (Eq. 13a) as well 

as the properties of a pure Gaussian error process (Eq. 13b).  The mean of log Ot+τ /Ot scales 

linearly with τ , like a SEG.  If µ equals zero, however, the mean of log Ot+τ /Ot is zero, like a 

pure Gaussian error process.  The variance of log Ot+τ /Ot scales linearly with τ in both cases, 

due to the process error variance in the SEG portion.  Unlike the SEG, however, the variance has 

a non-zero intercept due to the non-process error.  Finally, the distribution of log Ot+τ /Ot in the 

CSEG is normal for large τ just as in the SEG case.  In the following sections, we discuss two 

common population dynamics that result in non-process error variability, and illustrate how a 

CSEG can approximate their quasi-extinction probabilities. 

 

Random mass properties of age- or stage-specific counts 

A stochastic age-structured process does not asymptotically approach a single stable age 

distribution.  Convergence to a single stable age structure is prevented because the age structure 

has an inherent tendency to cycle, and random perturbations continuously trigger these cycles.  

Instead, the age structure enters a stochastic equilibrium, which is a bounded set of age structures 

within which the current age structure wanders.  The number of individuals at age i thus 

fluctuates about some mean value, and those fluctuations turn out to be normally distributed 

(Tuljapurkar & Orzack 1980; Tuljapurkar 1989).  When we follow the total population (as in the 

previous section), we average over these fluctuations.  If we are interested in the quasi-extinction 

properties of a particular age, however, or when the available data are restricted to a particular 

age, the age-structure fluctuations introduce a large non-process error and the SEG 

approximation cannot be used. 
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Spawner counts from the Chinook salmon model (Eq. 7) provide an example of this 

problem.  Although the spawner count (N5,t) tracks the overall total population trend, the life 

history of this species also produces strong spawner cycles (Figure 5a).  When the variance in 

log N5,t+τ /N5,t is plotted versus τ (Figure 5b), we see the same linear trend displayed by the total 

population (Figure 3b) but with a non-zero intercept due to the spawner cycles.  The distribution 

of log N5,t+τ /N5,t is approximately normal for large τ (Figure 5c,d), as predicted by theory.  The 

random mass properties of the log spawner counts are thus the same as those of a CSEG, and 

Figures 5e and 5f show that the CSEG model successfully describes their quasi-extinction 

probabilities across different threshold levels and forecast lengths.  More examples of CSEG 

approximations for the age-specific counts of sea turtles, petrels, and other salmonids can be 

found in works by Holmes (2001; 2004). 

 

Random mass properties of density-dependent population processes 

A myriad of natural forces can lead to density dependence, and ultimately to population 

regulation.  A regulated stochastic population process differs in several fundamental ways from a 

density-independent stochastic process.  A density-independent process will randomly explore 

all population sizes, because population size does not affect the growth rate.  It is like a random 

walk on a flat surface.  In contrast, a regulated process is like a random walk in a bowl; the 

population wanders about the bottom, but its random paths are ultimately bounded.  Stochastic 

boundedness is a general property of density-dependent models, including the stochastic theta-

logistic model (Diserud & Engen 2000) and its special cases the stochastic Gompertz (Dennis et 

al. 2006), theta-Ricker, and logistic models (Smitalova & Sujan 1992).  Other biological 

processes, such as predator-prey interactions with global stability (Ives et al. 2003), can also lead 
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to this type of regulation where the process wanders stochastically around a confined region of 

population size. 

 An important observation about regulated stochastic population processes is that many 

can be recast as an Ornstein-Uhlenbeck (O-U) stochastic process (Ricciardi 1977; Turelli 1986).  

The O-U process (Karlin & Taylor 1981) is a diffusion process where the growth rate is a linear 

function of distance from some mean level: 

ttt dWdtYYcdY σ+−= )( .                                                  [14] 

Here Y is some function of the population size, for example log N, and Y  is the mean to which 

the process reverts with a strength of reversion defined by the parameter c.  Stochasticity is 

specified by the Weiner process Wt  with a variance of σ.  If Yt is greater than Y  the growth term 

is negative and Y declines, whereas if Yt is less than Y  the growth term is positive and Y 

increases.  For this reason, the O-U is called a mean-reverting process.  The O-U process has 

been extensively studied in the context of statistical physics and statistical economics (e.g., Dixit 

& Pindyck 1994), and those fields have provided many theoretical results.  The distribution of 

Yt+τ -Yt in the O-U process is normal, with a mean of τc
t eYYY −−+ )(  and a variance of 

)1)(2/( 22 τσ cec −− .  The degree of correlation between Yt+τ and Yt falls off exponentially with τ.  

The asymptotic quasi-extinction times for O-U processes are exponentially distributed (Nobile et 

al. 1985; Larralde 2004; Alili et al. 2005).  The close relationship between the O-U process and 

stochastic density-dependent population processes explains why extinction times are typically 

found to be exponentially distributed in stochastic density-dependent models (Ricciardi 1977; 

Turelli 1986; Goodman 1987; Middleton & Nisbet 1997).   

O-U processes show two extreme behaviors.  When the pull towards the mean is weak (c 

is small), the paths strongly resemble a density-independent random walk (Eq. 4 with µ = 0); the 
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variance of Yt+τ - Yt is approximately linear with time, at least until τ is large.  In this case, a SEG 

with µ = 0 can approximate the quasi-extinction probabilities for moderate time horizons and 

thresholds.  At the other extreme, when the pull towards the mean is strong (c is big), the process 

becomes tightly regulated about the mean value.  This behavior, for τ not too small, can be 

approximated by the pure non-process error model (Eq. 12): 

ττ ε

ε

++ +=

+=

tnpt

tnpt

YY

YY

,

,                                                          [15] 

Here Y  is the long-term mean population size, a.k.a. the carrying capacity.  This approximation 

works because the correlation between Yt and Yt+τ falls off very rapidly for large c, so Yt+τ is 

approximately normal with mean Y  and variance c2/2σ . 

Recognizing these extreme behaviors in the O-U process suggests that a CSEG can also 

approximate the random mass properties of a stochastic regulated process for moderate forecast 

lengths.  The CSEG is a combination of an SEG and a pure Gaussian error model, after all, and 

can thus be used to imitate both extremes.   

To illustrate the CSEG approximation for density-dependent processes, we used a 

stochastic model with Ricker density dependence (Sabo et al. 2004): 

tttt KNrrNN ε+−+=+ /loglog 1 ,                                       [16] 

where εt is a normally distributed variable with mean zero and variance 2
pσ , r is the intrinsic rate 

of increase, K is the carrying capacity, and Nt is the total population size.  Two specific cases 

were examined: moderate density dependence (r = 0.02) and strong density dependence (r = 0.2).  

For both examples, K was set at 1000, 2
pσ  at 0.01, and N0 was drawn randomly from the 

stochastic equilibrium. 
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Figures 6a and 6b show sample realizations of the simulations with moderate (right 

panels) and strong (left panels) density dependence.  A plot of the variance in log Nt+τ  /Nt as a 

function of τ for the model with moderate density dependence (panel c) shows that the variance 

will eventually plateau, but this does not occur within the 100 years of the simulation.  For the 

model with strong density dependence, the variance quickly reaches a plateau (panel d).  Panels e 

and f compare the CSEG’s quasi-extinction probabilities to the actual probabilities observed in 

the stochastic Ricker simulations.  These panels show that a CSEG can successfully approximate 

the two-dimensional quasi-extinction surface for these two density-dependent processes.  Sabo 

and Gerber (2007) give other examples of CSEG approximations for populations regulated by 

predator-prey interactions, and we discuss another example using a regulated multi-species 

community in the following section. 

 

Estimated versus theoretical stochastic approximations  

The previous sections have discussed the random mass properties of several important 

classes of population processes, and illustrated the power of a simple stochastic model (the 

CSEG) to approximate their quasi-extinction probabilities.  This completes step 1 of our 

statistical modeling outline (Figure 1c): we have used statistical theory to select a single 

approximating model that is valid for broad classes of possible generating processes.  In addition 

because the CSEG was originally developed as a solution to the problem of measurement error in 

census data (Holmes 2001; Holmes & Fagan 2002; Lindley 2003; Holmes 2004; Staples et al. 

2004), the CSEG approximation will simultaneously cope with non-process errors caused by 

measurement errors in the data collection step. 
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While the previous sections focused on the existence of a theoretical CSEG 

approximation, this section focuses on the estimation of the theoretical CSEG from population 

count data.  This is the second step illustrated in Figure 1c: estimation of the random mass 

model.  To illustrate the performance of estimated CSEGs, we make use of two different cross-

validation studies, both of which focus on forecasting 80% population declines.  The first study 

uses simulated data from three different cyclic population processes.  These were chosen because 

they illustrate CSEG performance for processes with strong population feedbacks.  These 

feedbacks generate high levels of non-process error.  Other cross-validation studies have 

examined the performance of the CSEG approximation for non-cyclic processes (Holmes 2001; 

Morris & Doak 2003; Staples et al. 2004).  The goal of our second cross-validation study is to 

test CSEG forecasts using a large dataset of actual time series from species of conservation 

concern. 

 

Parameter estimation for the CSEG 

The CSEG is an example of a state-space model with Gaussian errors, a class of models 

with well-developed estimation methods.  One standard and flexible maximum-likelihood 

method for state-space models is the Kalman filter (Harvey 1989, section 3.4).  Lindley (2003) 

and Holmes (2004) have shown how to apply the Kalman filter to the CSEG.  Extended Kalman 

filters also exist which allow for non-Gaussian errors.  The Kalman algorithm easily deals with 

missing values, and allows for the incorporation of supplementary data.  Other parameter 

estimation approaches are also available.  For example, restricted maximum likelihood (REML) 

can take advantage of the special correlations between counts in a CSEG (Staples et al. 2004).  

Standard statistical packages can be used for REML estimation (Dennis et al. 2006 show an 
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algorithm for the corrupted Gompertz of which the CSEG is a special case).  Finally, a slope 

method has been developed (Holmes 2001) which performs a linear regression on the variance 

versus τ plots (such as in Figure 5b) to estimate the critical 2
pσ  term.  Our experience is that the 

slope method is most robust when the data are generated from a strongly cyclic process, but this 

increased robustness comes at the cost of an increased bias.  In the following cross-validations, 

we used the slope estimation method, because the Kalman filter and REML methods gave poor 

estimates for the strongly cyclic data produced by our examples.  The Kalman filter in particular 

was often unable to separate 2
pσ  and 2

npσ  even with 20 to 30 years of our simulated cyclic data.   

There is still much research to be done on robust estimation methods for CSEGs and their 

variants.  In particular, further statistical research is needed to understand how to include any 

non-quantitative knowledge we might have about the population’s life history, and how to adjust 

for multi-year correlations in the data generated by the population dynamics. 

 

Simulation studies of CSEG forecasts for cyclic processes 

We used a Monte Carlo approach to study the performance of our estimated CSEGs on 

large numbers of time series simulated from the same stochastic process.  Using a particular 

stochastic model (hereafter referred to as the ‘base’ model), we randomly generated 1000 

parameterization periods with lengths of 10, 20, or 30 years.  To draw these randomly from the 

distribution of possible parameterization periods, we first allowed the simulation to run for 100 

years.  After this “burn-in” period, the data were collected for each parameterization period, 

},...,,{ 21 kOOO .  A CSEG was then estimated from each parameterization period using the slope 

method (Holmes 2001, 2004).  In this manner, we obtain 1000 estimated CSEGs, which were 

used to forecast the probability of an 80% population decline within the next 50 years.  To 
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determine the actual probability of 80% decline, we used the base model to simulate 1000 

random 50-year trajectories forward from the end of the parameterization period.  These 

simulations were started from the full population state (i.e. age-structure or multi-species 

densities depending on the model) at the end of each parameterization period.  Thus, for each of 

the 1000 simulated periods, we obtain a CSEG estimate for the probability of quasi-extinction 

and an independent actual probability of quasi-extinction.   

To calculate the quasi-extinction probabilities, however, we have to define the quasi-

extinction threshold a little more explicitly.  Specifically, to what population size is the 80% 

decline relative?  In PVAs, some type of average of the last 3-5 censuses is often used, to avoid 

having estimates be adversely affected by the measurement error or other non-process error in 

the last census period, Ok.  In this paper, we use kN̂ , which is a maximum-likelihood estimate of 

the count at the end of the parameterization period with the non-process error removed.  Figure 7 

shows examples of tN̂  (the grey lines).  kN̂  is a fourth parameter that must be estimated during 

CSEG estimation. 

As discussed in the introduction, this paper is focused on using the CSEG to estimate a 

population process’ expected quasi-extinction probability or the propensity of the process to 

experience quasi-extinction.  Therefore, we cross-validate our CSEG estimates against the true 

expected probability of quasi-extinction: 

E[Pr(qe)] = ∑
},...,,{

21
21

}),...,,Pr({
kOOO

kOOO Pr(80% decline in 50 years | },...,,{ 21 kOOO ). 

Here },...,,{ 21 kOOO  denotes a simulated parameterization period.  Pr(80% decline in 50 years | 

},...,,{ 21 kOOO ) is the actual probability of 80% decline given that parameterization period, and 
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Pr( },...,,{ 21 kOOO ) is the probability of the parameterization period.  Pr( },...,,{ 21 kOOO ) is 

1/1000 since our parameterization periods are random samples from the stochastic equilibrium. 

We perform simulations of three very different population models, all of which generate 

cycles: a stage-structured model (Figure 7a), a density-dependent model with over-compensating 

dynamics (Figure 7b), and a multi-species model with four interacting species (Figure 7c).  For 

the stage-structured model, we used the Chinook salmon model (Eq. 8) and estimated the CSEGs 

from the spawner stage only.  The chosen parameterization (given in Figure 5), when coupled 

with environmental stochasticity, produces strongly fluctuating spawner counts (Figures 5a and 

7a).  We next simulated an over-compensating, density-dependent process using the stochastic 

Ricker model (Eq. 16).  The parameters chosen for this model (K = N0 = 1000, r = 0.02, 

04.02 =pσ ) are taken from recently published PVA analyses for density-dependent processes 

(McCarthy et al. 2003; Sabo et al. 2004).  With these parameters, an interaction between the 

density dependence and the noise term leads to large oscillations in the population abundance.  

To generate the multi-species time series, we used a first-order, multivariate, autoregressive 

(MAR-1) process.  In this model, the dynamics of each species is described by a discrete 

stochastic Gompertz model:  

tititi NbgN ,,1, loglog ε++=+ ,                                                      [17] 

where g is the growth rate, b is the strength of the density dependence, and εi,t is a normally 

distributed variable with mean zero and variance 2
iσ .  Multi-species dynamics are modeled by 

extending Eq. 17 (Ives et al. 2003): 

Xt+1 = G +BXt + Εt .                                                          [18] 

Here Xt is a vector of the population sizes for each species at time t, G is a vector of their growth 

rates, B is the community matrix describing the strength of self-regulation (diagonal elements) 
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and interspecies interactions (off-diagonals), and Et is a process noise vector.  We parameterized 

the MAR-1 process using estimates from a zooplankton community in Peter Lake, WI, USA 

(Ives et al. 2003).  To estimate and forecast risks, we used the time series for only one species 

(large phytoplankton), ignoring the other species (small phytoplankton, daphnia, non-daphnia 

zooplankton).  Fluctuations due to interactions with the other species create non-process 

variability in the large phytoplankton’s trajectories. 

Figure 8 shows CSEG estimates of the expected probability of decline, E[Pr(qe)], using 

10-, 20-, and 30-year parameterization periods.  The first thing to notice is that 10-year 

parameterization periods are insufficient for estimating quasi-extinction risks.  Although the 

actual estimates are not terribly biased, the uncertainties on the estimates range from 0 to 1.  

Thus, for the rest of the discussion, we refer only to those results with 20- or 30-year 

parameterization periods.  Using these longer parameterization periods, the mean estimated 

CSEG risks (black dots) are close to and show a similar overall shape as the actual risks (solid 

lines) but are not dead-on; they are biased up or down depending on the model.  The estimated 

risks are biased because the slope method produces a biased estimate of 2
pσ .  This bias can be 

approximately halved by estimating the bias with parametric bootstrapping (Wilcox 2004).  Even 

though the CSEG estimates are biased, the close correspondence between estimated risks and 

actual risks is striking given that all three models produce strongly oscillatory data with high 

non-process variability.   

The boxes and whiskers in Figure 8 show the precision of the estimates, enclosing 50% 

and 95% of the estimates respectively.  The line in the middle of each box represents the median.  

The inner first quartiles (covering 50% of all estimates) are quite small for the MAR and salmon 

simulations.  In addition, for these two population dynamics, the 95% ranges of the estimates 



24 

were less than [0,1] at both short (10-20 year) and long (30+ year) forecast lengths.  For the 

Ricker model, although the short-term (10- and 20-year) forecasts have low variability (Figures 

8e,f) the long-term forecasts have very wide 95% ranges.  This occurs because the µ parameter 

(which measures trend) should have been constrained to zero for the Ricker model.  Because this 

process reverts to the long-term mean population size very slowly, however, the µ estimates for 

each time series ranged widely between positive and negative values.   

Estimating and forecasting are known to be difficult for processes with µ = 0 (flat trend), 

because even small errors in estimating µ lead to large errors in the estimated long-term 

population size.  This was less of a problem for the MAR example since that process fluctuates 

rapidly around the long-term mean.  There has been recent research on estimating and 

forecasting extinction risks for density-dependent processes using a discrete Gompertz model 

with non-process error (Dennis et al. 2006), which may be a better way to approach estimation 

for slowly reverting processes, like our Ricker example.  This model is essentially Eq. 17 

observed with Gaussian error, so the CSEG is a special case of the discrete Gompertz model 

(albeit without mean reversion). 

 

Studies on CSEG forecasts for real time series 

Simulations are useful for studying population dynamics, but the models chosen for a 

simulation study are not necessarily representative of typical populations.  For our second cross-

validation study, we looked at the performance of CSEGs estimated from actual time series data.  

We assembled a database of 60 time series from populations being monitored for conservation or 

management reasons, obtained from literature searches and through direct contact with 

governmental agencies across the world (Appendix S1).  All the time series are at least 30 years 
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long.  The majority (40) come from populations that are at high risk and officially listed by a 

conservation agency at endangered or threatened levels (or the equivalent).   

Our methods are similar to those of other cross-validations using real data (Brook et al. 

2000; Holmes & Fagan 2002; Holmes et al. 2005), but add analyses to examine the precision, 

not just the bias, of estimates.  Each time series was divided into a 20-year parameterization 

period followed by a 10-, 20-, or 30-year forecast period.  The handful of much longer time 

series were segmented to provide a larger sample size; when a long time series was segmented, 

however, the parameterization periods were never allowed to overlap.  For each time series a 

CSEG was estimated from the parameterization period using the slope method.  The CSEG was 

used to make a prediction concerning whether the quasi-extinction threshold was reached during 

the forecast period (10-, 20- or 30-year depending on the analysis).  Predicted risks were then 

compared to the actual numbers of quasi-extinctions in the forecast periods.  

We examined the estimates in three different ways.  In our first analysis, the actual 

number of quasi-extinctions in the entire database was compared to the expected number using 

the CSEG estimates at different thresholds.  This assessed the systematic bias in the method 

(over- or under-estimation),  and is analogous to the analysis of E[Pr(qe)] shown in Figure 8.  

The goal of this analysis is to quantify whether we can properly estimate the risk on average.  In 

the second analysis, we ranked the time series by their CSEG estimated quasi-extinction 

probabilities and compared the actual and predicted cumulative number of quasi-extinctions in 

the sorted dataset.  This quantifies the degree to which we can properly estimate the risk for a 

specific population (rather than the average risk across populations).  Thus, we ask whether a 

low estimated risk for a specific population corresponds to a low actual risk.  In the third 

analysis, the 95% and 50% confidence intervals of the CSEG estimates were estimated using 
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parametric bootstrapping.  This analysis informs us about the precision of the estimated quasi-

extinction probabilities.   

Figure 9 shows the estimated (dots) and actual (solid line) proportion of quasi-extinctions 

in the entire database within 10-, 20-, and 30-year forecast periods following a 20-year 

parameterization period.  The observed and predicted frequencies match well for all forecasts.  

This indicates that the overall bias of the CSEG forecasts is low, provided 20 years of data were 

used for parameterization. 

Figures 10a, 10b, and 10c show the cumulative number of 80%, 50% and 20% declines 

respectively over a 10-year forecast period and a 20-year parameterization period.  The dotted 

line is the cumulative number of quasi-extinctions predicted by the CSEGs, and the black line is 

the actual number observed in the sample.  If there were no correlation between the expected 

number and actual number, the black line would be straight.  Instead the black line is convex, 

which shows that the estimated risks are correlated with the actual risks; a low estimated risk is 

generally associated with a low actual risk.  However, the actual line is more concave than 

expected.  This means that we tend to underestimate low to moderate risks.  This is the same 

pattern seen in the salmon models (Figure 8b,c) which suggests that this bias may be due to a 

biased estimate of 2
pσ .  Due to the limited number of time series lasting longer than 30 years, we 

could not effectively test the cumulative distributions for forecasts longer than 10 years.   

Figure 10 shows the estimated 95% CIs (grey lines) and 50% CIs (black lines) for the 

CSEG-estimated quasi-extinction probabilities.  Panels 10d, 10e, and 10f show results for 80%, 

50% and 20% declines respectively, over a 10-year projection period.  The 50% CIs are quite 

narrow, while the 95% CIs are wide but still less than [0,1].  The precision is better for estimates 

of the more severe 80% and 50% declines.  A similar result was seen by Sabo et al. (2004). 
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Discussion 

Random mass properties are the ensemble patterns that emerge from a large collection of 

samples from a stochastic process.  In this paper, we have drawn a distinction between statistical 

models, which seek to capture the random mass properties of stochastic population processes, 

and mechanistic models, which seek to portray the biological processes responsible for observed 

population dynamics.  We have sought to show how statistical models of a particular random 

mass property, the risk of quasi-extinction, can be inferred from time series data by drawing on 

existing theoretical work on stochastic processes.  We showed that simple statistical models can 

accurately approximate the quasi-extinction risk across different forecast lengths and risk 

thresholds, for a variety of different population processes.  We have focused on a particular 

statistical model, the corrupted stochastic exponential Gaussian model (CSEG), and have shown 

that this three-parameter model can be adequately estimated from 20-30 years of data.  Using 

two cross-validations, one based on simulations of cyclic populations and the other based on a 

large dataset of time series from species of concern to conservation, we illustrated that the CSEG 

can be used to estimate quasi-extinction risk with a relatively low bias and a 95% CI generally 

much smaller than [0,1].  

Arguing that the CSEG is the panacea for all quasi-extinction estimation is not the point 

of this paper, however.  There is ongoing theoretical work on the subject of stochastic 

approximations for population processes, and there remains much to learn especially about the 

random mass properties of density-dependent processes.  It would be myopic to assert that the 

CSEG is the be-all and end-all, despite its prowess at modeling quasi-extinction for important 

classes of population dynamics.  Rather, the point of this paper is to illustrate and advocate for 



28 

statistical models derived from theoretical research concerning the random mass properties of 

population trajectories.  The main strengths of this approach are threefold.  First, if a convergent 

approximation can be found that works for several broad classes of dynamics, one need not know 

the underlying mechanistic population process to correctly forecast quasi-extinction.  This is 

important because there is often too little data to estimate the underlying mechanisms.  Second, a 

statistical model with few parameters requires much less data for estimation, and is much less 

likely to be compromised by over-fitting.  Finally, the parameters of a statistical model can be 

estimated and their uncertainty quantified using standard statistical techniques.  Our inability to 

rigorously quantify the uncertainly of our predictions from parameter-rich, mechanistic models is 

a serious problem, and one too rarely acknowledged.   

 

Confronting the criticisms of quantitative PVA 

Although we argue for a statistical approach to PVA, our models are still open to many of 

the criticisms that have been leveled at PVA models in general.  Specifically, PVA models are 

often criticized for their simplicity and lack of precision (Taylor 1995; Ludwig 1996; Beissinger 

& Westphal 1998; Ludwig 1999; Fieberg & Ellner 2000; Coulson et al. 2001; Ellner et al. 2002).  

Their critics contend that because PVA models fail to address the correct causes of population 

dynamics, they must yield biased and/or imprecise estimates of the consequences of these causes 

(i.e., the population dynamics).  These criticisms also assert that PVA predictions are unreliable 

because 1) the data used to estimate model parameters are marred by systematic or random 

observer errors, 2) the PVA model ignores too many important processes in the population 

dynamics, and 3) sparse datasets lead to highly uncertain parameter estimates and wide 
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confidence intervals on the estimated risk.  Here we revisit these criticisms in light of our results 

regarding statistical PVA models.   

First, in fairness to previous critiques of PVA, we note that conservation biologists are 

indeed faced with data riddled with observation errors.  Observer errors can certainly corrupt and 

bias estimates of the true yearly variations experienced by a population.  Random observation 

errors present the biggest problems for those species with moderate growth rates and process 

errors.  In these situations, extinction risk estimates are highly uncertain even with error-free data 

(Meir & Fagan 2000).  CSEG models provide an explicit way of addressing many of these 

problems, and greatly reduce the effects of observation errors on the quasi-extinction risk 

forecast (Holmes 2001; Lindley 2003; Holmes 2004; Staples et al. 2004).  This research shows 

that the bias due to observation error can be quantified and its effects mitigated using a state-

space model, like the CSEG. 

A second common criticism of PVA models -- and one of the central issues addressed in 

this paper -- is that most PVA models are just too simple to be believable.  Critics correctly point 

out that most PVAs ignore many biological complexities.  There are many examples of the 

problems with PVA models that are missing age or stage structure (Fieberg & Ellner 2000; 

Ellner et al. 2002; Wilcox & Possingham 2002), individual variations (Fox & Kendall 2002), 

demographic stochasticity (Lande 1993; Engen et al. 2003; Engen et al. 2005), density 

dependence (Foley 1994; Sabo et al. 2004), and species interactions (Gerber et al. 2005; Sabo & 

Gerber 2007).  For a population whose quasi-extinction risks need to be estimated, however, the 

available data will often be too limited to specify these details with confidence.  For example, 

there are serious difficulties in determining even basic details like density dependence with 

confidence (Dennis & Taper 1994).  We argue that the best solution to the problem of 
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unknowable details is the development of statistical models based on convergent statistical 

patterns.  We have shown several examples of how complex details can average out when we 

look at ensemble properties, and how these ensemble properties can have similar patterns across 

different types of population dynamics – even cyclic dynamics.   

Finally, there is what is known as the [0,1] criticism.  This is the claim that sparse data 

and strong environmental variations, when coupled, lead to quasi-extinction risk estimates whose 

confidence intervals span the entire range of probabilities (Ludwig, 1996; Fieberg and Ellner, 

2000; Ellner et al., 2002).  We have alluded to this criticism throughout the paper in our 

discussion of the CSEG predictions, which often span a much smaller range.  Along similar 

lines, some researchers have found that risk estimates using simple PVA models are reasonably 

precise only for forecasts that are much shorter (e.g., 20%) than the number of years available for 

parameterization (Fieberg and Ellner, 2000).   

We do agree with this criticism when too little data (i.e., only 10 years) are used for 

parameterization.  As we have seen in the simulations of this study and other cross-validations 

(Holmes 2004), a ten-year time series is too short for estimating quasi-extinction.  But our 

conclusions are much more optimistic when a 20-year time series is available.  In this case, 

relatively unbiased and precise quasi-extinction estimates could be made for up to two and a half 

times the length of the parameterization period for our declining and rapidly fluctuating 

populations (but not the slowly fluctuating populations).  This agrees with our results from our 

other simulation and cross-validation studies (Holmes 2001; Holmes & Fagan 2002; Holmes 

2004; Sabo & Gerber 2007).  With real data from species of conservation concern, we were only 

able to fully cross-validate for 10-year forecasts given data limitations, but here again found low 

average bias, correlation between estimated and real risks, and confidence intervals that were 
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much less than [0,1].  Although we argue that with 20-year of data the [0,1] problem is not as 

severe or ubiquitous as critics assert, we certainly agree that quasi-extinction estimates can have 

high uncertainty -- even with 20+ years of data.  Here the real advantage of a statistical approach 

emerges.  With a theoretically derived statistical model, the uncertainty in the quasi-extinction 

estimates can be established via theory and can be estimated using traditional statistical methods. 

 

Conclusion 

We do not dispute the importance of mechanistic models for testing hypotheses about 

underlying mechanisms or for simulating the effects of specific management actions.  If the only 

goal is to forecast quasi-extinction, however, then we argue for a statistical model based on a 

small set of estimable parameters.  Appropriate statistical models can be derived from the theory 

of stochastic population processes, and they yield a risk metrics whose uncertainty can be 

estimated from the type of data most common for species of concern – time series of population 

counts.  It is true that in some cases these estimates will have high variance, but we argue that 

statistical models both reduce this variance and allow us to quantify the uncertainty in more a 

traditional manner.  In contrast, for all but the most well-studied species any mechanistic 

population model will be replete with poorly estimated parameters.  In such cases, meaningful 

uncertainty estimates are impossible.  Critics of PVA tend to argue that the devil is in the details.  

We counter that the compulsive urge to account for intricate biological details ignores the fact 

that these details average out thanks to the stochastic and multiplicative nature of population 

growth.  If we focus only on the details, we lose sight of the common patterns that govern the 

ensemble behavior of population trajectories. 
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Figure Legends 

 

Figure 1.  Reasoning using statistical and mechanistic modeling.  a) In a mechanistic paradigm, 

the model is meant to mimic the data observed.  The data are thus used to choose the model via 

some formal or ad hoc selection method.  Once a model is selected its parameters are estimated, 

often from the same data.  b) A familiar example of statistical reasoning is inference concerning 

a large sample mean.  The Central Limit Theorem (CLT) for independent random variables says 

that the means of large samples converge to the normal distribution.  Thus, in this case a theory 

concerning the random mass properties of samples is used to specify the model.  Although the 

large-sample distribution is known, its parameters µ and σ2 must be estimated from a small finite 

sample.  The CLT also specifies the relationship between small samples and the distribution of 

large-sample means.  c) The basic steps of building a statistical model based on the random mass 

properties of population trajectories: 1) a theory of the common stochastic patterns and model 

that emerge from diverse processes, 2) estimation of the theoretical stochastic model from the 

data, and 3) forecasting using the estimated model. 

 

Figure 2.  The statistical properties of pure random walks.  a) Trajectories of a random walk, 

showing the fraction that decline below some threshold.  b) The 2D quasi-extinction surface as a 

function of the forecast length (x-axis) and threshold (y-axis), shown here as a percentage 

decline from the population size at year 1.  c) The quasi-extinction probability is shown as a 

function of the forecast length.  d) The quasi-extinction probability is shown as a function of the 

threshold.  e) The long-term distribution of log N is normal.  f) The variance and mean of 

log tt NN /τ+  scale linearly with time. 
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Figure 3.  Example of an SEG model used to approximate the quasi-extinction risk for total 

population counts in Chinook salmon.  a) Multiple realizations of the total population trajectory 

from the salmon model.  b) Variance and mean of log Nt+τ /Nt as a function of τ, showing the 

linear scaling of these parameters.  c) A histogram of log N10/N1, showing a bell-shaped 

distribution (the right-hand tails are heavy).  d) A histogram of log N50/N1, showing a better 

approximation to the normal distribution; the tails are no longer noticeably heavy.  e) Actual 

probabilities of hitting 20%, 75%, and 90% decline (solid lines) versus those predicted from the 

appropriate SEG (dotted lines) as a function of forecast length.  f) The same as in (e), but as a 

function of threshold value for three different forecast lengths.  The parameter values for the 

salmon matrix (Eq. 7): p = 0.4815; s1 = 0.018; s2 = 0.044; so = 0.8; b3 = 0; b4 = 0.216; b5 = 1; m = 

2747;  )),0(exp(~ 2
, iti Normal σε  with 02.02

0 =σ , 13.02
1 =σ , 08.02

2 =σ .  The correlation 

coefficient between ε1 and ε2 was R = 0.2, and the correlation between ε0 values for all age 

classes was R = 0.8.  The latter represents ocean survival. 

 

Figure 4.  Example of an SEG model used to approximate the quasi-extinction risk in a 

stochastic metapopulation model.  a) Multiple realizations of the total metapopulation trajectory 

from the simulations.  b) Diagram of the basic metapopulation properties in this example.  Each 

site disperses a different fraction of its population each year (the relative dispersal rates are 

shown by the size of the arrows).  80% of dispersers go to neighbors to the east and south, and 

20% are distributed equally among all other sites in the metapopulation.  Sites vary in their 

intrinsic population growth rates, but all are declining.  Growth rates range from 0.99 to 0.80.  

Yearly growth rates vary (s.d. = 0.1) and are correlated between sites (R = 0.9).  d) Actual 
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probabilities of hitting 20%, 75%, and 90% declines (solid lines) versus those predicted from the 

appropriate SEG (dotted lines) as a function of forecast length.  f) The same as in (e), but as a 

function of threshold value for three different forecast lengths.   

 

Figure 5.  Example of a CSEG approximation to the quasi-extinction risk for spawner counts 

from the Chinook salmon model.  a) Multiple realizations of the (logarithmic) spawner count 

trajectory.  b) A plot of the variance in log N5,t+τ/N5,1 as a function of τ. The transient behavior is 

evident for τ < 20, but approaches linearity for larger τ.  The intercept is non-zero.  c) A 

histogram of log N5,10/N5,1, showing a bell-shaped distribution with slightly heavy tails.  d) A 

histogram of log N5,50/N5,1, showing that the distribution is now more normal.  e) Actual 

probabilities of hitting 20%, 75%, and 90% declines (solid lines) versus those predicted from the 

appropriate CSEG (dotted lines) as a function of forecast length.  f) The same as in (e) but as a 

function of threshold for three different forecast lengths.  Parameter values for the salmon matrix 

(Eq. 7): p = 0.4815; s1 = 0.018; s2 = 0.044; so = 0.8; b3 = 0; b4 = 0.216; b5 = 1; m = 2747;  

)),0(exp(~ 2
, iti normal σε  with 02.02

0 =σ , 13.02
1 =σ , 08.02

2 =σ .  The correlation coefficient 

between ε1 and ε2 was R = 0.2, and the correlation between ε0 values for all age classes was R = 

0.8.  The latter is higher because it represents ocean survival that is highly correlated across age 

classes. 

 

Figure 6.  Example of CSEG approximations to the quasi-extinction risk for stochastic Ricker 

simulations with weak and strong density dependence.  (a,b) Multiple realizations of each 

process.  (c,d) The actual variance as a function of τ (solid line) and the CSEG approximation 

(dotted line).  (e,f) Actual and CSEG quasi-extinction probabilities versus forecast length for 
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three different thresholds.  (g,h) Actual and CSEG quasi-extinction probabilities versus threshold 

for three different forecast lengths.  The CSEG parameters are (left panels) µ = 0, =2
pσ 0.005, 

=2
npσ 0.01; (right panels) µ = 0, =2

pσ 0.0005, =2
npσ 0.0158. 

 

Figure 7.  Time series produced from the three simulated models used in cross-validation.  a) A 

model for Chinook salmon.  The data used for estimation and prediction are spawner counts 

(black line).  b) A stochastic Ricker model.  The data used are the total population counts (black 

line).  c) A four-species predator-prey model.  The data used for estimation and prediction are the 

counts for one species only (black line); the other species are ignored.  The black lines include 

both process and non-process error.  The grey lines show the maximum-likelihood estimated 

trajectory with process errors only (i.e., N in the CSEG equation).  This is calculated from the 

CSEG model, which was estimated from the observed data (black lines).  In the cross-validation 

of these simulations, the threshold was set relative to the estimated value of N (grey line) at the 

end of the parameterization period. 

 

Figure 8.  Cross-validation using simulations of the expected quasi-extinction probability as a 

function of forecast length (x-axes).  The three rows refer to a Chinook salmon simulation (top 

panels), a stochastic Ricker model (middle panels), and a 4-species stochastic community 

(bottom panels).  The solid lines show the actual mean probability of 80% decline observed in 

the simulations.  The boxes and whiskers show the range of CSEG estimates obtained using a 

10-year (left panels), 20-year (middle panels), and 30-year (right panels) parameterization 

period.  The boxes enclose 50% of the CSEG estimates, and the whiskers show the range 
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containing 95% of the estimates.  The black dots show the mean CSEG estimate.  The CSEG 

parameters were estimated using the slope method. 

 

Figure 9.  Cross-validation using real time series data: the expected fraction of quasi-extinction 

within the dataset versus the actual fraction for 10-, 20- and 30-year forecasts.  The sample size 

(number of time series) is different in each panel because there are fewer long time series in the 

dataset.  The 95% CI error bars on the CSEG estimates were calculated using a binomial error 

model.  A 20-year parameterization period was used for all time series, with the CSEG estimated 

via the slope method. 

 

Figure 10.  Cross-validation using real time series data: cumulative quasi-extinction probabilities 

in the long-term dataset.  The left-hand panels show the observed and expected cumulative 

number of quasi-extinctions in a 10-year forecast, based on a 20-year parameterization period.  

The time series (x-axis) are ordered according to their CSEG-estimated quasi-extinction risk.  

The panels show a) the 80% decline threshold, b) the 50% decline threshold, and c) the 20% 

decline threshold.  The right-hand panels show the 95% and 50% confidence intervals on the 

estimated probabilities for 80%, 50%, and 20% declines (panels d, e, and  f respectively).  

Confidence intervals were calculated using parametric bootstrapping.  The estimated CSEG was 

used to generate 1000 random 20-year parameterization periods.  From each of these another 

CSEG was estimated to give 1000 bootstrapped CSEGs.  The bootstrapped CSEGs were then 

used to generate quasi-extinction forecasts.  The CIs thus show the variability of the 

bootstrapped quasi-extinction risks. 
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Table S1. Summary of population time series used in cross-validation analyses.  Only surveys that represented an index of an entire 
distinct population or subpopulation were used.  Breeding ground surveys from single colonies were used when the species showed 
high year-to-year site fidelity or the colony was a representative index of the population.  The references show the original references 
for the data.  Many of the time series were updated by direct contact with the authors or government agencies involved.  If the species 
is listed above the LC (least concern) status on the IUCN Red List, that is noted first in the Status column.  If the study population is 
listed separately in the country or region where the censuses take place, that is listed next.  Explanation of the status level is given in 
the footnote.  Unit of census refers to the segment of the population that is censused.  ‘Total population’ does not mean that the total 
population is counted (in all except two cases, the surveys are index counts of some sort), but rather that the count includes all ages 
and sexes. 
 
Common Name Species Status in 

2006* 
Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

American 
Woodcock 

Scolopax minor  Aves Eastern region, U.S. 39 39 Total 
Population 

Kelley & Rau (2006) 

Antarctic 
Fulmar 

Fulmarus 
glacialoides 

 Aves Pointe Geologie 
Archipelago,  
Antarctica 

36 36 Total 
Population 

Jouventin & Weimerskirch 
(1991) 

Attwater's 
Prairie Chicken 

Tympanuchus 
cupido attwateri 

EN USA Aves Coastal Prairie, 
Louisiana and Texas 

59 30 Total 
Population 

Peterson & Silvy (1996) 

Curlew Numenius 
arquata 

A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

Bald Eagle Haliaeetus 
leucocephalus 

T USA Aves Florida 31 31 Occupied 
Territories 

Bureau of Wildlife Diversity 
Conservation (2003) 

Buller's 
Albatross 

Thalassarche 
bulleri 

VU IUCN Aves West Coast, North 
Island, NZ 

35 35 Beach 
Carcass 
Cnt/km 

Ornithological Society of NZ, 
Beach Patrol Database 

Common Eider Somateria 
mollissima 

 Aves Wadden Sea Coast, 
Germany 

37 34 Breeding 
Pairs 

Becker (1991) 

Emperor 
Penguin 

Aptenodytes 
forsteri  

 Aves Pointe Geologie 
Archipelago, 
Antarctica 

37 36 Breeding 
Pairs 

Micol & Jouventin (2000) 



Common Name Species Status in 
2006* 

Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

Great Tit Parus major  Aves Wytham Wood, UK 31 31 Total 
Population 

Saether, et al. (1998) 

Grey-headed 
Albatross 

Thalassarche 
chrysostoma 

VU IUCN Aves West Coast, North 
Island, NZ 

35 35 Beach 
Carcass 
Cnt/km 

Ornithological Society of NZ, 
Beach Patrol Database 

Grey Heron Ardea herodias  Aves England and Wales 50 50 Occupied 
Nests 

Stafford (1971) Reynolds 
(1974) Reynolds (1979) 

Kirtland's 
Warbler 

Dendroica 
kirtlandii   

VU IUCN 
EN USA 

Aves northern half of 
Michigan's lower 
peninsula 

33 33 Singing 
Males 

Dennis, et al. (1991) 
Solomon (1998) 

Kittiwake Rissa tridactyla A UK Aves North Shields, Tyne 
and Wear, UK 

34 34 Nests with 
Eggs 

Coulson & Thomas (1985) 

Lapwing Vanellus 
vanellus 

A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

Light-mantled 
Albatross 

Phoebetria 
palpebrata 

NT IUCN 
5 NZ 

Aves West Coast, North 
Island, NZ 

35 35 Beach 
Carcass 
Cnt/km 

Ornithological Society of NZ, 
Beach Patrol Database 

Meadow Pipit Anthus pratensis A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

Mute Swan Cygnus olor A UK Aves Thames River, UK 150 138 Total 
Population 

Cramp (1972) 

New Zealand 
Shore Plover 

Thinornis 
novaeseelandiae 

EN IUCN 
1 NZ 

Aves South East Island, 
Chatham Islands, NZ 

39 20 Total Adults Davis (1994) Department of 
Conservation (2001) 

Peregrine 
Falcon 

Falco peregrinus A UK Aves Cumbria, UK 34 34 Breeding 
Pairs 

Horne & Fielding (2002) 

Puerto Rican 
Parrot 

Amazona vittata CR IUCN 
EN USA 

Aves Puerto Rico 32 21 Total 
Population 

Snyder, et al. (1987) U.S. 
Fish and Wildlife Service 
(1999) 

Reed Bunting Emberiza 
schoeniclus 

A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 



Common Name Species Status in 
2006* 

Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

Red Kite Milvus milvus A UK Aves Wales 49 41 Total 
Population 

Davis & Newton (1981) 

Red-Crowned 
Crane 

Grus japonesis EN IUCN Aves Hokkaido, Japan 36 36 Total 
Population 

Masatomi (1987) 

Roseate Terns Sterna dougallii R UK Aves main colonies in 
Ireland, Britain, and 
France 

35 35 Breeding 
Pairs 

Cabot (1996) 

Greater Sage-
Grouse 

Centrocercus 
urophasianus 

Petitioned 
US 

Aves Washington 34 34 Total 
Population 

Stinson, et al. (2004) 

Seychelles 
Magpie Robin 

Copsychus 
seychellarum 

CR IUCN Aves Frigate Is, Seychelles 35 22 Total 
Population 

Komdeur (1996) 

Sharptailed 
Grouse 

Tympanuchus 
phasianellus 

SC US Aves Washington 30 30 Total 
Population 

Hays, et al. (1998) 

Skylark Alauda arvensis A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

Snipe Gallinago 
gallinago  

A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

Sooty 
Shearwater 

Puffinus griseus NT IUCN 
5 NZ 

Aves New Zealand 39 39 Carcass 
surveys 

Scofield & Christie (2002) 

South Polar 
Skua 

Stercorarius 
maccormicki 

 Aves Pointe Geologie 
Archipelago, 
Antarctica 

34 31 Territories Micol & Jouventin (2000) 

Southern Giant 
Petrel 

Macronectes 
giganteus 

VU IUCN Aves Pointe Geolgie 
Archipelago, 
Antarctica 

39 36 Fledged 
chicks 

Micol & Jouventin (2000) 

Trumpeter 
Swan 

Cygnus 
buccinator 

VU1 
Canada 

Aves RMP/tri-state flock, 
Rocky Mountains, 
US & Canada 

33 25 Total 
Population 

U.S. Fish and Wildlife 
Service (2004) 



Common Name Species Status in 
2006* 

Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

Trumpeter 
Swan 

Cygnus 
buccinator 

Petitioned 
US 

Aves RMP/Canada flock, 
Rocky Mountains, 
US & Canada 

33 25 Total 
Population 

U.S. Fish and Wildlife 
Service (2004) 

Twite Carduelis 
flavirostris  

A UK Aves 'The Hille', 
Lancashire, UK 

32 32 Territories 
per km 

Fuller, et al. (2002) 

White Heron Egretta alba 
modesta 

1 NZ Aves Waitangiroto River, 
New Zealand 

51 45 Nests Miller (2001) 

White Stork Ciconia ciconia 2 SPEC Aves Baden-Wurttenberg, 
Germany 

39 39 Breeding 
Pairs 

Bairlein (1991) Newton 
(1998) 

White Stork Ciconia ciconia 2 SPEC Aves Oldenburg/NW 
Germany 

61 61 Breeders Bairlein (1991) 

White-capped 
Albatross 

Thalassarche 
steadi 

NT IUCN Aves West Coast, North 
Island, NZ 

35 35 Beach 
Carcass 
Cnt/km 

Ornithological Society of NZ, 
Beach Patrol Database 

Whooping 
Crane 

Grus americana EN IUCN 
EN USA 

Aves Arkansas, Texas 66 66 Total 
Population 

Dennis, et al. (1991) 

African 
Elephant 

Loxodonta 
africana 

EN IUCN Mammalia Addo National Park, 
South Africa 

69 69 Total 
Population 

Whitehouse & Hall-Martin 
(2000) 

Alpine Ibex Capra ibex  Mammalia Gran Paradiso 
National Park, Italy 

45 45 Total 
Population 

Jacobson, et al. (2004) 

California Gray 
Whale 

Eschrichtium 
robustus 

MMPA Mammalia California 46 24 Total 
Population 

Gerber, et al. (1999) 

Columbian 
White-tailed 
Deer 

Odocoileus 
virginianus 
leucurus 

EN USA3 Mammalia Douglas County, 
Oregon 

31 31 Total 
Population 

U.S. Fish and Wildlife 
Service (2003) U.S. Fish and 
Wildlife Service (2006) 

Grizzly Bear Ursus arctos 
horribilis  

T USA Mammalia Yellowstone National 
Park 

43 43 Adult 
Females 

Eberhardt, et al. (1986) 
Haroldson (2004) 

Hawaiian Monk 
Seal 

Monachus 
shauinslandi 

EN IUCN 
EN USA 

Mammalia Hawaiian Islands 
minus Midway 

46 31 Entire 
Population 
(almost) 

Gilmartin & Eberhardt (1995) 
Ragen & Lavigne (1999) 



Common Name Species Status in 
2006* 

Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

Musk Ox Ovibos 
moschatus 

 Mammalia Nunivak Island, 
Alaska 

33 25 Total 
Population 

Spencer & Lensink (1970) 

Northern Fur 
Seal 

Callorhinus 
ursinus 

VU IUCN 
VU USA 

Mammalia St. Paul Island, 
Alaska 

96 94 Bull Count National Marine Mammal 
Laboratory, unpublished data 

Northern Fur 
Seal 

Callorhinus 
ursinus 

VU IUCN 
VU USA 

Mammalia St. George Island, 
Alaska 

96 96 Bull Count National Marine Mammal 
Laboratory, unpublished data 

Northern Fur 
Seal 

Callorhinus 
ursinus 

VU IUCN 
VU USA 

Mammalia St. George Island, 
Alaska 

53 46 Pups York & Hartley (1981) York 
(1985) York, et al. (2000) 

Northern Fur 
Seal 

Callorhinus 
ursinus 

VU IUCN 
VU USA 

Mammalia St. Paul Island, 
Alaska 

53 46 Pups York & Hartley (1981) York 
(1985) York, et al. (2000) 

Northern Fur 
Seal 

Callorhinus 
ursinus 

VU IUCN 
VU USA 

Mammalia San Miguel Island, 
California 

30 30 Pups York & Hartley (1981) York 
(1985) York, et al. (2000) 

Northern 
Resident Killer 
Whale 

Orcinus orca EN 
Canada 

Mammalia Pacific Northwest, 
US & Canada 

31 31 Total 
Population 

Wiles (2004) 

Pronghorn 
Antelope 

Antelocapra 
americana 

 Mammalia Yellowstone National 
Park 

33 32 Spring 
Population 

Keating (2002) 

Pronghorn 
Antelope 

Antelocapra 
americana 

 Mammalia Northern Arizona 53 53 Total 
Population 

U.S. Fish and Wildlife 
Service, unpublished data 

Southern 
Resident Killer 
Whale 

Orcinus orca EN USA Mammalia Pacific Northwest, 
US & Canada 

31 31 Entire 
Population 

Wiles (2004) 

Vancouver 
Island Marmot 

Marmota 
vancouverensis 

EN IUCN Mammalia Vancouver Island, 
Canada 

30 27 Total 
Population 

Janz, et al. (2000) 

Weddell Seal Leptonychotes 
weddellii 

 Mammalia McMurdo Sound, 
Antartica 

38 38 Pups Cameron & Siniff (2004) 
Cameron (2001) 

Wildebeest Connochaetes 
taurinus 

CD IUCN Mammalia Ngorongoro Crater, 
Tanzania 

30 22 Total 
Population 

Runyoro, et al. (1995) 



Common Name Species Status in 
2006* 

Taxonomic 
Class 

Location of Study 
Population 

Length 
(yrs) 

# of 
Counts 

Type of 
Census 

References 

Western Swamp 
Tortoise 

Pseudemydura 
umbrina 

CR IUCN 
CR AU 

Reptilia Ellen Brook Reserve, 
W. Australia 

37 37 Total 
Population 

Burbidge & Kuchling (2004) 

Western Swamp 
Tortoise 

Pseudemydura 
umbrina 

CR IUCN 
CR AU 

Reptilia Twin Swamps 
Reserve, W. 
Australia 

31 31 Total 
Population 

Burbidge & Kuchling (2004) 

         

*Status: IUCN: EX (extinct), CR (critically endangered), EN (endangered), VU (vulnerable), T (threatened), CD (conservation dependent), NT (near threatened).  
USA: EN (endangered), T (threatened), VU (vulnerable), SC (special concern).  UK: R (Red-listed), A (Amber-listed), BCI (Bird of Conservation Importance, 
Joint Nature Conservation Committee). AU: CR (critically endangered), VU (vulnerable).  NZ: 1 (nationally critical), 5 (gradual decline).  SPEC, Species of 
European Concern: 2 (depleted).  MMPA (covered under the U.S. Marine Mammal Protection Act). 
1 Delisted 1996         
2 The Wood Turtle is listed as endangered, threatened, or special concern at the state level throughout its range in the U.S. 
3 The Douglas County DPS was delisted in 2003. 
 




