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Colonization-competition trade-offs have long been her-
alded as a mechanism for promoting the competitive co-
existence of species in patchy environments (Hutchinson
1951; Skellam 1951; Horn and MacArthur 1971; Levins
and Culver 1971). In short, this mechanism argues that
species that are inferior competitors in local patches can
coexist with superior species by having a higher dispersal
rate. Empirical evidence for colonization-competition
trade-offs comes from fungi communities (Armstrong
1976), species of Daphnia (Hanski and Ranta 1983),
chalk grasslands of England and Europe (Grubb 1986),
fly communities (Hanski 1990), and grasslands of Min-
nesota (Tilman 1994). These trade-offs also have well-
established theoretical foundations from over 25 yr of
work on competitive coexistence using patch models
(e.g., Levins 1970; Levins and Culver 1971; Hastings
1980; Nee and May 1992; Hanski and Zhang 1993; Til-
man 1994; Tilman et al. 1994; Comins and Hassell 1996).

When biologically interpreting the colonization-
competition trade-off in these patch models, it is natural
to infer that it is a theoretical prediction about dispersal
distances and competitive coexistence. Certainly many of
the models were developed with the idea of an inferior
competitor that disperses its offspring widely outside a
local patch versus a superior competitor that disperses its
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offspring mostly locally. However, the patch models that
are normally used to study the colonization-competition
trade-off (such as those in Levins and Culver 1971; Has-
tings 1980; Tilman 1994) are not explicitly spatial, mean-
ing the environment is broken into patches but the
patches do not have an explicit spatial location. Thus,
dispersal distance has only an implicit meaning in the
sense of within- versus between-patch dispersal. These
models explore the effect of the numbers of colonists that
are sent outside their local patch, not the explicit dis-
persal distance. In this case, the strict interpretation of
the colonization-competition trade-off is that to survive
the inferior competitor must send out viable colonists at
a sufficiently higher rate than the superior competitor.
What then is the importance of dispersal distance per
se in competitive interactions between two species? A
number of spatially explicit models have been developed
that model competition between species that disperse
their offspring different distances (Weiner and Conte
1981; Pacala 1986; Crawley and May 1987; Hobbs and
Hobbs 1987; Czaran and Bartha 1989). Although only
one of these studies (Pacala 1986) was designed to di-
rectly study the effect of dispersal distance, all suggest
that the dispersal distance has an effect on the ability of
an inferior competitor to coexist. Using detailed models
of plant population dynamics, Pacala (1986) showed that
localized dispersal caused an aggregated spatial distribu-
tion and a decreased equilibrium density. These changes
in turn enhanced the ability of an equal or inferior com-
petitor to invade. When two species were equal competi-
tors, the species with a longer dispersal distance could in-
vade a monoculture of the species with the shorter
dispersal distance but not vice versa. These latter results
came from a simulation study for one set of life-history
parameters and only looked at invasion success, but they
suggest strongly that differential dispersal distances affect
the ability of species to coexist. Crawley and May (1987)
looked directly at coexistence conditions using a spatially
explicit patch model of competition between an annual
and a perennial in which the perennial was a superior
competitor for space but the annual was both a more
prolific and longer distance colonizer. As in Pacala’s
study, localized dispersal by the superior species caused it



to clump and lowered its equilibrium density. This in
turn enhanced the coexistence of the inferior species.
Czaran and Bartha (1989) developed a model for the dy-
namics of 11 weedy plant species and compared simula-
tions assuming localized versus global dispersal. They
found that the inclusion of localized dispersal greatly
changed the transient densities. A qualitatively similar re-
sult was seen by Dytham (1994) in a study of the effect
of habitat destruction on the densities of two locally dis-
persing competitors. Dytham showed that local dispersal
significantly changed the densities and persistence thresh-
olds of the two species.

A consistent observation in these studies is that local-
ized dispersal causes a clumped spatial distribution and a
lower overall density and that these effects can in turn
benefit a competing species. However, each of the models
is very different and many of the results are based on
simulations with which only limited parameter space ex-
ploration is possible. It is not clear whether a large differ-
ence between the dispersal distances of two competitors
fundamentally changes coexistence criteria as opposed to
simply lengthening the time to reach equilibrium, quan-
titatively but not qualitatively changing coexistence crite-
ria, or causing changes only on account of interactions
with other attributes of the model such as gap or patch
size. In order to further a basic understanding of the im-
portance of dispersal distance, we return to the simplified
patch occupancy models that have often been used to
study the colonization-competition trade-off. However,
we add explicit spatial location and explicit distances be-
tween patches. Specifically, we use cellular automaton
analogues of patch occupancy models. Similar cellular
automaton models have been used recently to explore the
spatial population dynamics of competing plant species
and other sedentary species (Karlson and Jackson 1981;
Crawley and May 1987; Inghe 1989; Rees and Long 1992;
Silvertown et al. 1992; Colasanti and Grime 1993; Halley
et al. 1994; Molofsky 1994).

We study two models of two-species hierarchical com-
petition. When the competitors disperse their offspring
equal distances, both models require a trade-off between
colonization and competitive ability in order for the two
species to coexist. We specifically address whether this
colonization-competition trade-off is required when the
inferior competitor disperses its offspring over a much
wider area than the superior competitor. The coloniza-
tion-competition trade-off is a fundamental aspect of
many simple patch models of competition. Whether
wider dispersal by the inferior competitor can overcome
this requirement is in essence a litmus test of the power
of long-distance dispersal. We study the criteria for coex-
istence at equilibrium and do not explore whether the
steady states are static, cyclic, or chaotic. Throughout, we
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explore the benefit of long-distance dispersal only. Some
studies have shown that localized dispersal can enhance
coexistence by segregating competitors (Pacala 1986).
However, this is not explored for the simple reason that
for the types of cellular automaton models used here, lo-
calized dispersal either does not change the equilibrium
state or uniformly makes equilibrium coexistence more
difficult (Durrett 1991; Durrett and Moller 1991; Durrett
and Swindle 1991).

Hierarchical Competition

We first consider competition in which one species is a
superior competitor for space and can both exclude the
inferior competitor from a site and remove it by coloniz-
ing on top of it. When both species disperse globally, we
have the following patch occupancy model (Levins and
Culver 1971; Hastings 1980; Nee and May 1992) for the
fraction of sites occupied by the superior, S, and inferior
competitor, I:

as _ ¢S(1 —8) — 38§
dt
and (1)
@zcil(l - S—1I) — 8l — ¢8I,
dt

where ¢, and ¢; are the colonization rates of each species
(superior and inferior, respectively), and § is the local ex-
tinction rate. We assume for clarity of presentation that
the extinction rates of the superior and inferior species
are equal. The coexistence criterion for equation (1) is

(Hastings 1980):
Cs
G >cl< |

Since the superior’s colonization rate must be greater
than its death rate to persist, ¢; must be greater than c.
This is the colonization-competition trade-off (fig. 14).

To study the advantage conferred by long-distance dis-
persal, we consider a cellular automaton analogue of the
patch occupancy model (see Mollison and Kuulasmaa
1985 or Durrett and Levin 1994 for an introduction to
ecologically oriented cellular automaton models). The
habitat is considered to be an infinite square grid of sites.
Each site can contain only one individual and has a set of
four immediate neighbors. The superior competitor can
colonize only locally onto its immediately neighboring
four sites while the inferior competitor disperses its off-
spring over the entire grid. Thus, in this model, the infe-
rior species has an infinitely longer dispersal distance
than the superior species.

(2)
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Figure 1: Hierarchical competition with exclusion and mortality. A, Patch occupancy model. In this model, both species disperse
equally and globally. The inferior competitor must have a colonization advantage to coexist with the superior competitor. This is
the colonization-competition trade-off. B, Cellular automaton model. In this model, the inferior competitor colonizes globally and
the superior competitor colonizes locally. When the colonization rate of the superior species is small (and the observed fraction
of occupied sites is correspondingly small), a dispersal-competition trade-off exists. In this region, long-distance dispersal of off-
spring allows an inferior competitor with a small colonization disadvantage to coexist with the superior species.

The model can be described explicitly as below. At
each, very small, time step, sites make transitions ac-
cording to the following probabilities. (1) With probabil-
ity cdt, the superior competitor sends out a colonist to a
randomly chosen neighboring site. If the site is empty or
occupied by the inferior competitor, the colonist estab-
lishes. (2) With probability ¢;dt, the inferior competitor
sends out a colonist. The colonist has an equal probabil-
ity of landing on any site in the grid. If it lands on an
empty site, it establishes; otherwise it dies. (3) The infe-
rior and superior competitors die with probability ddt.

Using a mean field argument described in the appen-
dix, we show that the coexistence criterion for the infe-
rior competitor is:

85t 8
(1-89 1-8*

(3)

Ci>

where §* is the equilibrium fraction of sites occupied by
superior competitor in the cellular automaton model.
There is no equation for S* in terms of ¢,. However, in-
formation about the relationship between S* and ¢, can
be used to determine the qualitative shape of the coexis-
tence criterion.

When the superior competitor is rare (S* = 0), it will
persist only if its colonization rate, c,, is greater than its

death rate, 3, by some margin (Durrett 1991; Mollison
and Levin 1995). This margin compensates for intraspe-
cific competition due to local colonization. From simula-
tions, the minimum colonization rate is approximately
¢, = 1.650 when colonists disperse to the nearest four
neighbors only (Durrett 1991; Mollison and Lewis 1995).
At the same time, when the superior competitor is rare,
the minimum colonization rate for the inferior competi-
tor is simply ¢; = d. Thus, when the superior competitor
is rare, the inferior competitor can have a lower coloni-
zation rate than the superior competitor yet still persist
(fig. 1B). In this case, the inferior competitor can coexist
by virtue of its long-distance dispersal.

When the superior competitor is common, we can
use a simple argument to show that ¢; must be greater
than ¢, When the superior competitor occupies most
of the space, any inferior site will be surrounded by ap-
proximately four superior neighbors. The rate that the
superior competitor colonizes onto inferior sites is then
approximately 4¢,I. The coexistence criterion for the in-
ferior species is ¢;(1 — S*) > 4¢, + 0. Since 0 = S* = 1,
¢; must be greater than ¢ (fig. 1B). In general, ¢; must be
greater than ¢, when the average number of superior
neighbors per inferior site is > 1. Thus, a colonization-
competition trade-off is required when the superior com-
petitor is common.



The results from the cellular automaton model are re-
lated to results from studies on aggregation and coexis-
tence. In the cellular automaton model, the offspring of
the superior species are dispersed near the parent. When
the superior competitor is rare, this type of local coloni-
zation produces an aggregated colonization distribution.
That is, the vast majority of patches receive no colonists,
and a few patches (i.e., the neighboring patches) receive
many colonists. When the superior species is common,
however, most patches receive a similar number of colo-
nists so that there is little aggregation. Aggregation as a
mechanism for coexistence has been studied by a num-
ber of authors (e.g., Atkinson and Shorrocks 1981; Ives
and May 1985; Green 1986; Shorrocks 1990; Dytham and
Shorrocks 1992, 1995). The results of these models indi-
cate that when intraspecific aggregation is greater than
interspecific aggregation, coexistence of superior and in-
ferior competitors is facilitated (Ives 1988; McPeek and
Holt 1992).

Hierarchical Competition for Space Alone

In the previous model, the superior competitor causes
mortality of the inferior competitor. We now analyze the
case when the two species compete only for space. Here,
the inferior species is an annual and is not killed by the
superior perennial species; it simply cannot colonize sites
occupied by the superior species. An example of this type
of model is Crawley and May’s (1987) spatial model of
a competitively inferior annual plant, which spreads its
seeds widely, versus a competitively superior perennial
plant, which spreads ramets only locally.

We first consider the case when both species disperse
globally and randomly. This is represented by a patch oc-
cupancy model:

St+1 = [1 - (1 - Ss)st](l - EXP(_CsSr))
+ (]- - 6s)Su
(4)
and
Ir+1 = (1 - Sr+1)(1 - eXP(_CiL))'

The 1 — exp(—x) term is the fraction of sites that receive
at least one colonist. The model is written with discrete
time that allows competition to occur only during the
colonization phase. The condition for coexistence for
model (4) is:

L (5)
1—3S

Ci>

It can be shown that the colonization-competition trade-
off is necessary for coexistence by observing from equa-
tion (4) that $ > 1 — d,/c,. This means that at the point
when coexistence is just possible (when ¢; = 1/[1 — §]),
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the production of colonists by the inferior competitor
must be greater than that of the superior competitor (fig.
2A). The death rates of the two species are different, thus
the colonization-competition trade-off is stated in terms
of the lifetime production of colonists, ¢;/d; and c,/d;,
where 8, = 1.

To look at the effect of long-distance dispersal, we
consider a cellular automaton analogue of this model, in
which the inferior competitor disperses globally and the
superior competitor disperses locally (see also Durrett
and Levin 1994). Durrett and Schinazi (1993) have
shown that the coexistence criterion is

1

¢ > R
1 — §*

(6)

where S* is the equilibrium fraction of sites occupied by
the superior species in the cellular automaton model.
This result is the same as that derived by Crawley and
May (1987) via a different analysis.

Because there is not an equation for S%, it is not possi-
ble to write down an equation for the coexistence crite-
rion as a function of ¢; and ¢,. However, we can qual-
itatively characterize the coexistence criterion (fig. 2B).
As discussed for the previous cellular automaton model,
¢; must be greater than d; by some margin to compen-
sate for intraspecific competition due to local dispersal,
¢/ = c;/6 = 1 + m. When ¢, is close to c.;, the su-
perior species is rare and S* =~ 0. At this point, the cri-
terion for coexistence of the inferior competitor is ¢; >
1. An inferior competitor with ¢;, such that 1 < ¢ <
1 + m has a colonization rate that is lower than that of
the superior species, but it still can coexist. Thus, a
higher lifetime colonization rate, ¢/39, is not strictly neces-
sary when the superior species is rare.

When the superior competitor is abundant, we note
that as the colonization rate of the superior species in-
creases, the fraction of space that it occupies ap-
proaches 1. We observe from simulations that

empty space in global model

empty space in cellular automaton model

1-35
= S,
1 — S*

as ¢,/d, — oo.

From equation (4), S~1-— &, exp(—c,) when S is very
close to 1. If we substitute 1 — J; exp(—c¢,) into equation
(6), then we see that ¢;/S; must be greater than ¢./S; (fig.
2B). When the superior competitor is common, the infe-
rior competitor must have a higher colonization rate.

Time to Extinction and Noninstantaneous Exclusion

In our discussion of coexistence conditions, we focused
on the equilibrium condition for coexistence. However,



