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Census data on endangered species are often sparse, error-ridden,
and confined to only a segment of the population. Estimating
trends and extinction risks using this type of data presents numer-
ous difficulties. In particular, the estimate of the variation in
year-to-year transitions in population size (the ‘‘process error’’
caused by stochasticity in survivorship and fecundities) is con-
founded by the addition of high sampling error variation. In
addition, the year-to-year variability in the segment of the popu-
lation that is sampled may be quite different from the population
variability that one is trying to estimate. The combined effect of
severe sampling error and age- or stage-specific counts leads to
severe biases in estimates of population-level parameters. I present
an estimation method that circumvents the problem of age- or
stage-specific counts and is markedly robust to severe sampling
error. This method allows the estimation of environmental varia-
tion and population trends for extinction-risk analyses using cor-
rupted census counts—a common type of data for endangered
species that has hitherto been relatively unusable for these
analyses.

One of the first questions a resource manager asks about
threatened and endangered species is, ‘‘How bad is it?’’ At

its most formal level, this question can be converted into a
population viability analysis (PVA), complete with estimates of
extinction risk and minimum viable-population sizes. But even if
a detailed PVA is not done, the ability to summarize the
trajectory of populations is crucial. Such a summary can be used
to inform managers on how much improvement must be made
in survival or reproduction to arrest a declining trend. It can be
used to assign priorities among different populations with dif-
ferent trends and to quantify the short-term risks of waiting while
managers or scientists seek more definitive information. One of
the more practical methods for addressing these questions was
presented by Dennis et al. (1), wherein they illustrate how
treating a time series of population counts as a diffusion process
can yield estimates of extinction risk. This diffusion approxima-
tion has since been used to estimate extinction risks for numer-
ous species of conservation concern (1–4).

An oft-cited limitation of this method, however, is the sensi-
tivity of its parameter estimates to sampling error (refs. 5 and 6
but also see ref. 7). Estimates of environmental variance (see
refs. 1, 3, and 8) are usually small, and are much smaller than the
severe sampling-error variance that plagues the data sets for
many threatened and endangered species. Although improving
the quality of data collection is an obvious recommendation, this
is not possible for historical data. Furthermore, severe sampling
error may be very difficult to remove because of a variety of
logistical constraints. Finally, not only is sampling error severe in
many cases, it often changes through time as methods are
improved, personnel changes, or entirely new methods of sam-
pling are adopted. A less commonly recognized limitation is that
for many species, only particular age classes or life stages are
amenable to census. For instance, spawners are counted for
salmon, nesting or breeding adults are often counted for birds,
mothers with cubs are counted for grizzly bears, and egg counts
are used for many other species. Counts of only a subset of the
population pose difficulties, because most risk analyses require

that the count at time t 1 1 stems from the count at time t—an
assumption that fails with many age- or stage-specific counts.

Here I use stochastic age-structured matrix models to generate
data, to which I add high and erratic sampling errors. I then
demonstrate the severe estimation errors that can occur when
age- or stage-specific counts are used as a surrogate for popu-
lation counts. Finally, building on the previous work of Dennis
et al. (1), I develop an alternative, more robust method for
estimating population parameters from highly corrupted age- or
stage-specific counts.

The Method and Parameter Estimation of Dennis et al. The popula-
tion dynamics model used by Dennis et al. (1) originates from the
observation that at the population level, stochastic age-
structured models with no density dependence behave as a
stochastic, discrete time model with exponential growth or
decline:

Nt 1 t 5 Ntexp~mt 1 «! where « , N~0, s2t!. [1]

The probability distribution of population size at time t 1 t is
lognormal. The parameter m determines the rate at which the
median increases through time, whereas s determines the rate of
spread of the distribution, in other words, the variability of
population size at time t 1 t. By a diffusion approximation, the
long-term trends, extinction probabilities, and times to extinction
are calculated easily (1).

When censuses are conducted yearly and there are no missing
census points, the maximum likelihood estimates of m and s2 are
(equations 24 and 26 in ref. 1):

m̂tot 5 mean@ln~Nt 1 1yNt!#

ŝtot
2 5 var@ln~Nt 1 1yNt!#. [2]

Note that m̂tot and ŝtot
2 refer to the parameters that are estimated

from the true population size with no sampling error.

Using Age- or Stage-Specific Counts as Surrogates for Population
Level Counts. When only age- or stage-specific data are available,
one option is to assume that these data have the same statistical
properties as total population counts and simply to use them in
lieu of population counts. For example, the estimates m̂age and
ŝage

2 could be calculated by using At in place of Nt in Eq. 2, where
At is the age- or stage-specific count at time t. However, unless
the variability among ages is similar and correlated, the vari-
ability measured in one age class will differ from the variability
at the population level (which is what we are trying to estimate).
Another option is to transform the data by using a running sum
to obtain a count that more closely approximates the total
population,
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Rt 5 O
i 5 1

L

wiAt 2 i, [3]

where L is the number of counts added together to give the
running sum count at time t and wi is the weight given to each
count. The optimal transformation would use survivorship and
fecundity information to calculate a proper wi and L. However,
in the examples presented here, I assume that survivorship and
fecundity information is limited, and the best weighting cannot
be determined. Instead, I use a uniform weighting of wi 5 1 for
all i. L is determined by using basic knowledge of the species’
generation time. One approach is to use the running sums
directly as a surrogate for population counts:

m̂run 5 mean@ln~Rt 1 1yRt!#

ŝrun
2 5 var@ln~Rt 1 1yRt!#. [4]

Unfortunately, this straightforward method suffers from bias
problems. When sampling error is absent, it gives variance
estimates that are highly underestimated (Fig. 1 Upper Right),
because the running sum transformation filters out variance.
When sampling error is present, it can highly overestimate the
variance (Fig. 1 Lower Right).

An Alternative Approach. To circumvent these bias problems, I
developed an alternative estimation method, the slope method.
This method was motivated by the observation that in a
stochastic exponential process, the mean and variance of
ln(Nt1tyNt) are linear functions of t with slopes of m and s2.
Because population counts through time are highly correlated,

a running sum of those counts (if not too long) retains much of
the lognormal properties of the component counts. Correspond-
ingly, the mean and variance of ln(Rt1tyRt) are approximately
linear functions of m and s2. With the slope method, the
parameter estimates are

m̂slp 5 slope of the reg. line of mean@ln~Rt 1 tyRt!# vs. t

ŝslp
2 5 slope of the reg. line of var@ln~Rt 1 tyRt!# vs. t. [5]

One of the strengths of the slope method is its robustness to
extreme lognormal observation error, Xs, because ln(XszNt1ty
XszNt) ;N(mt, s2t 1 constant) (see Figs. 1 and 2). The slope
method underestimates ŝtot

2 when sampling error is absent (Fig.
1 Upper Left), because of correlation between Rt and Rt1t and
serial correlation among ln(Rt1tyRt), ln(Rt1t11yRt11), ln(Rt1t12y
Rt12), . . . This bias, however, is much less than the bias with the
running sum method—a negative 15% vs. a negative 75% bias
(L 5 4). With a very long time series, subsampling Rt to remove
serial correlation might give better estimates, but with shorter
data sets (20–50 years), the errors caused by removing data seem
to be more severe than the bias caused by serial correlation.

The Errors Between the True and Estimated m and s 2. Estimates of
m and s2 include two different sources of error: (i) error caused
by using a finite rather than an infinite time series and (ii) error
caused by observation errors and counts that are not a repre-
sentative sample of all ages. The first is the error between m̂tot,
ŝtot

2 and m, s2. Dennis et al. (1) demonstrate how to calculate this
type of error. The second type is the error between the true m̂tot
and ŝtot

2 and values calculated from corrupted age or stage
counts.

To explore this second type of error, I studied the behavior of
time series generated from stochastic matrix models. One thou-
sand simulated 20-year time series provided true population
counts, Nt, and corresponding age- or stage-specific counts,
which I later corrupted with sampling error. I then compared the
true m̂tot and ŝtot

2 , calculated by using Nt, with the estimates from
the three methods using the corrupted counts. The stochastic
matrix models I used were based on published age- or stage-
structured matrix models for endangered Chinook salmon, sea
turtles, and petrels. These species represent three very different
life histories, but in each case, only a subset of ageystage classes

Fig. 1. Effect of L, the number of counts added together, on the biases in the
estimates of ŝtot

2 with the slope (Left) and running sum (Right) methods. The
data are from 500 100-year realizations of the stochastic exponential growth
model (Eq. 1) with m 5 20.05 and s2 5 0.05. The results are relatively
insensitive to the level of m (m , 0) or s2. The median bias and variability in the
parameter estimates when no sampling error is present are shown (Upper).
The median biases when sampling error is 2, 4, 6, 8, or 10 3 s2 are shown
(Lower).

Fig. 2. Illustration of the slope method for estimating the variance and mean
of ln(Nt11yNt) from ln(Rt1tyRt), where Nt is the total uncorrupted population
count and Rt is a running sum of age- or stage-specific counts. The slope of
var[ln(Rt1tyRt)] vs. t is an estimate of s2. The slope of mean[ln(Rt1tyRt)] vs. t is
an estimate of m (in this case m , 0). The effect of sampling error on the
var[ln(Rt1tyRt)] vs. t line is to raise the line while keeping the slope (used to
estimate s2) approximately the same (A). The effect of sampling error on the
mean[ln(Rt1tyRt]) versus t line is to increase the variance of the data around
the line (B).
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are countable. The magnitude of environmental variation added
to the survivorship and fecundity parameters in the matrices was
determined by direct data on fecundity variation or by fitting the
model to reflect the variability observed in an available 20-year
time series for each species (or a related species). To the age- or
stage-specific counts, one of the following four types of sampling
error was added. Note that the sampling error variance added
was 5–20 times higher than the environmental variance.

(i) Unbiased error. The sampling error was drawn from the
lognormal distribution, exp[N(m 5 1.0, s2 5 0.5)]. More than
50% of the corrupted counts were over 25% too high or 25% too
low.

(ii) Unbiased but density-dependent error. Percentage-wise
large errors were more common when counts were small.
Sampling error was drawn from the lognormal distribution,
exp[N(m 5 1.0, s2 5 y)], as follows: counts , 100, y 5 0.5 1 (1 2
county100)z0.5; counts . 100, y 5 0.5.

(iii) Unbiased but erratic error. The accuracy of the counts was
changed every 5 years. The sampling error was drawn from the
lognormal distribution, exp[N(m 5 1.0, s2 5 y)], as follows: years
1–5, y 5 0.5; years 6–10, y 5 1.0; years 11–15, y 5 0.25; and years
16–20, y 5 0.5.

(iv) Biased and erratic error. Bias and accuracy of the counts
changed every 5 years. The sampling error was drawn from the
lognormal distribution, exp[N(m 5 x, s2 5 y)], as follows: years
1–5, (x, y) 5 (0.5, 0.5); years 6–10, (x, y) 5 (1.0, 1.0); years 11–15
(x, y) 5 (1.5, 0.25); and years 16–20 (x, y) 5 (0.75, 0.5).

SpringySummer Chinook Salmon. The following is a modified Leslie
matrix for Snake River springysummer Chinook salmon (8) in
which the spawner class is separate.

3
N1

N2

N3

N4

NS

4
t 1 1

5 3
0 0 0 0 19.11z0.058z«1

0.8z«2 0 0 0 0
0 0.8z«3 0 0 0
0 0 0.815z0.8z«4 0 0
0 0 0.185z0.8z«4 1 0

4
3 3

N1

N2

N3

N4

NS

4
t

. [6]

The «i terms represent environmental variability and were drawn
from a multivariate lognormal distribution, exp[N(m 5 0, s2 5
0.02)], with correlation 0.99 between the «is. All simulations
were started with the age distribution: [8490 450 397 285 379].
This distribution is not the equilibrium age structure; it has a
much higher number of 1- to 2-year-old fish. This distribution
was chosen to illustrate the behavior of the parameter estimates
when the age structure is far from equilibrium. In this case, the
perturbed age structure creates a large pulse that travels through
all of the time series.

For the running sum transformation, 5 consecutive spawner
counts were added together,

Rt 5 O
i 5 1

5

Ns,t 2 i, [7]

where Ns,t is the spawner count at time t. The maximum spawner
return age for this stock is 5, and a running sum of 5 counts is
related to the number of total current and potential spawners in
the population at time t.

Loggerhead Sea Turtles. Crowder et al. (9) estimated the following
matrix for loggerhead sea turtles divided in the age classes; egg,
and yr 1–7, yr 8–15, yr 16–32, and yr 321 :

3
N1

N2

N3

N4

N5

4
t 1 1

5 3
0 0 0 4.665z«1 61.896z«1

0.675z«2 0.703z«2 0 0 0
0 0.047z«3 0.657z«3 0 0
0 0 0.019z«4 0.682z«4 0
0 0 0 0.061z«5 0.809z«5

4
3 3

N1

N2

N3

N4

N5

4
t

. [8]

The environmental variance terms, «i, were drawn from the
multivariate lognormal distribution, exp[N(m 5 0, s2 5 xi)],
where x1 5 0.5, x2 5 0.01, x3 5 0.01, x4 5 0.01, and x5 5 0.01, and
correlation of 0.99 between «is. These distributions were chosen
to reflect the enormous variability in the annual number of
nesting females (and hence, egg counts) that is a characteristic
of many sea turtle populations (10, 11), and the observed
variance patterns in a 26-year time series of egg counts of green
turtles (Chelonia mydas) in Costa Rica (10). Unlike the salmon
matrix, the sea turtle matrix does not tend to produce population
cycles. This difference makes age- or stage-specific counts more
robust as population estimators. However, high variability in one
age class (in this case, the sampled egg class) relative to others
also leads to biased parameter estimates.

Because sea turtle life spans are 301 years, a biologically
motivated running sum would include roughly 30 egg counts,
weighted more toward recent egg counts. However, with a
20-year time series, the running sum cannot include more than
'5–6 counts, while still leaving enough data points for estima-
tion. For the example here, three egg counts were added together
to produce each running sum.

Hawaiian Dark-Rumped Petrel. Breeding-colony censuses of this
petrel include mainly birds aged 6–23 years. Juveniles comprise
'50% of the population but most (70%) do not return to the
colony and are not counted (12). Simons (12) estimated param-
eters for a 35 3 35 Leslie matrix for this endangered petrel by
using juvenile survivorship (1–5 yr) 5 0.8034 1 «1, adult
survivorship (6–35 yr) 5 0.93 1 «2, juvenile fecundity 5 0, and
adult fecundity 5 0.294 1 «3 (matrix not shown). The environ-
mental variability terms, «i, were drawn from the multivariate
lognormal distribution, exp[N(m 5 0, s2 5 xi)], where x1,2 5 0.01
and x3 5 0.1, with 0.99 correlation. The variance in adult
fecundity reflects that observed by Simons. I did not have
estimates of the variability in survivorships and chose moder-
ately low levels. Simulations indicated that the results were
not qualitatively sensitive to the level of variation in the
survivorships.

The breeding-bird counts were transformed by

Rt 5 O
i 5 1

L 5 5

Nbreeding,t 2 i. [9]

L 5 5 was chosen as follows: the breeding bird count at time t
contributes age-1 birds in year t, age-2 birds in year t 1 1, age-3
birds in year t 1 2, etc. Because petrels begin breeding on average
at age 5, breeding-bird counts (t 2 4 to t) contribute to the
current total population size. With information on adult fecun-
dity and juvenile survivorship, a better weighting could be
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determined. I assume that such information is unavailable, as it
often is, and I used a uniform weighting instead.

Results
For each time series, m̂tot and ŝtot

2 were calculated from the true
total population count by using Eq. 2. Estimates of m̂tot and ŝtot

2

then were calculated by using the uncorrupted and corrupted
age- or stage-specific counts: m̂age and ŝage

2 with Eq. 2 directly
from the corrupted counts, m̂run and ŝrun

2 with Eq. 4 from the
running sums, and m̂slp and ŝslp

2 with Eq. 5. The percent differ-
ences between the estimated and true m̂tot and ŝtot

2 then were
calculated. Two risk metrics, the mean rate of population growth
[l 5 exp(m̂ 1 ŝ2)] and the probability of a 90% decline within
a given time horizon (1), were calculated by using the estimated
and true m̂tot and ŝtot

2 . The probability of extinction could not be
calculated because this requires an estimate of total population
size, which is impossible to derive purely from age- or stage-
specific counts with little other information.

Effect of Counts That Do Not Reflect the Population. The first
complication I examined concerned simply the effect of age- or
stage-specific counts (no sampling error) on parameter esti-
mates. Figs. 3 and 4 (Top) show the difference between the true
parameters and their estimates, m̂age and ŝage

2 , calculated by using
age- or stage-specific counts directly. In general, these specific
counts were poor surrogates for population counts. The param-
eter ŝage

2 was overestimated highly (1,000–7,000%). The param-
eter m̂age was biased 100% upward for the salmon example (this
bias was not present if the simulations were started with the age
distribution at equilibrium). The bias in the parameter estimates
had strong effects on the calculated risk metrics. The population

rate of decline was overestimated by a median of 150% for the
salmon and 53% for sea turtles (Fig. 5). Although the estimate
was good for the petrels, it became biased upward when sampling
error was present (next section). Similarly, the estimates of
probability of a 90% decline within a given time horizon were
biased highly for salmon and sea turtles (similar to Fig. 6 A–C).

The true m̂tot and ŝtot
2 were much more accurately estimated by

using the running sum and slope methods [compare Figs. 3 and
4 (Top) to Figs. 3 and 4 (Middle and Bottom)]. Note the scale in
the lower panels (Fig. 4) is an order of magnitude smaller
because of the smaller error with these methods. The bars
marked ‘‘None’’ indicate the simulations with no sampling error.
Both methods greatly improved the estimation of ŝtot

2 . The
median bias of ŝslp

2 was 245%, 151%, and 272% for salmon, sea
turtles, and petrels. The median bias of ŝrun

2 was 141%, 1190%,
and 287%. Estimation of m̂tot improved greatly for salmon; the
new estimates were unbiased and tight but there was little
improvement for the other species. The better estimates of ŝtot

2

translated into significantly better risk estimates. The median
overestimation of population growth rate ranged between 0.3%
and 4% with low variability (Fig. 5). The estimates of probability
of a 90% decline in a given time frame also improved and were
relatively unbiased, although variable (similar to Fig. 6 C and D).

Effect of Severe Sampling Error. When age and stage counts were
used as direct surrogates for population counts, high sampling
error caused substantial overestimation of ŝtot

2 (Fig. 4). The most
extreme increase occurred for the petrels. In this case, ŝage

2 gave
an unbiased estimate when no sampling error was present but
overestimated by a median 4,300–6,900% with sampling error
added. The other two species showed smaller but still large
overestimates. The corresponding estimates of population
growth were highly biased (Fig. 5), and the estimates of the

Fig. 3. Effect of severe sampling error on estimates of m̂tot by directly using
age or stage counts as surrogates for population counts (Direct), by using the
slope method (Slope), or by using the running sum method (Runsum). In the
boxplots, the middle line indicates the median; the box encloses 75% of the
data; and the whiskers indicate the range of the entire data. The four types of
sampling error are unbiased lognormal error (1), unbiased lognormal error
with variance that depends on the count size (2), unbiased lognormal error
with variance that changes every 5 years (3), and biased lognormal error with
variance and bias that change every 5 years (4).

Fig. 4. Effect of severe sampling error on estimates of ŝtot
2 . Note that the

scale (Top) is much larger, because of larger errors associated with the direct
method. See Fig. 3 for a description of the boxplots and sampling-error types.
Directly using age- or stage-specific counts leads to large biases in the estimate
of ŝtot

2 , and sampling error greatly exacerbates the problem. The slope method
allows significantly fewer biased estimates in the face of severe sampling
error.
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probability of a 90% decline were highly biased and variable for
all species, including petrels (Fig. 6 A–C).

In contrast, the running sum and slope methods filtered out
much of the high sampling error. With the slope method, the
median upward bias in the ŝtot

2 estimate was 35–275%, 100–
250%, and 50–500% for the salmon, sea turtles, and petrels (Fig.
4). With the running sum method, the median bias was 175–
325%, 300–400%, and 100–300%. This bias compares to median
upward biases of 2,500–11,000%, when the corrupted counts
were used directly. The resulting estimates of mean population
growth with the slope method were unbiased and the upper and
lower quartiles of the estimates varied between 5% low and 5%
high for all except the worst sampling error (Fig. 5). The
probability of a 90% decline within a given time frame was
relatively unbiased (Fig. 6 D–F) but was highly variable.

Difference Between the Running Sum and Slope Methods. Comparing
Figs. 3 and 4, it would seem that using running sums as a direct
surrogate for population counts often gives less variable and no
more biased estimates than the slope method. The sea turtle
example is the exception and points out one of the weaknesses
of the running sum method. The running sum estimates, espe-
cially ŝrun

2 , are sensitive to L, the number of counts added
together to create a running sum count. This sensitivity can be
demonstrated by using the simple stochastic exponential process
(Eq. 1). With no sampling error, the bias in the estimate of ŝtot

2

increases from 250% to 280% as L increases from 2 to 6 (Fig.
1 Upper). For the slope method, in contrast, the bias increases
from 210% to 230%. With sampling error, the sensitivity of the
running sum estimates becomes severe, with the bias changing
rapidly from 150–300% to 280% when L is changed from 2 to
6 (Fig. 1 Lower). In comparison, the slope method estimates are
relatively insensitive to L and high sampling error. In practice,
choosing the optimal L may be difficult, because basic life history
information is not available, e.g., mean age of return to breeding
sites, mean lifespan, maximum breeding age, etc. Thus, robust-

ness to poor choices for the running sum transformation is
important.

The decreased bias provided by the slope method comes with
a cost. Its variance estimate, ŝslp

2 , is much more variable than the
estimates from the direct or the running sum methods (Fig. 1
Upper). When sampling error, age-structure perturbations, or
age-specific variability are high, the significantly reduced bias
provided by the slope method will outweigh the increased
variability in its variance estimate (Fig. 1 Lower). When the data
do not suffer from such problems (e.g., the expected sampling
error variance is less than the environmental variance), standard
methods (1) or ŝage

2 should give better parameter estimates. The
slope method should be viewed as a complement to the methods
introduced by Dennis et al. and specifically as a tool for data sets
beset by high nonprocess error variance. Finally, note that the
slope method has greater data needs. In its current form, the
method does not allow missing data, and in addition, 15 to 20
years of data seem to be a minimum (for an L of 4). Using the
method with only 10 years will result in severe underestimates of
environmental variance. This problem rapidly dissipates as the
time series’ length increases to 20 years.

Discussion
Limited and error-riddled data are common for many species for
which management decisions and status assessments must be
made. Although improving sampling techniques is always war-
ranted, certain constraints are often impossible to remove. Age-
or stage-specific counts are one of these problems. Commonly,
one segment of the population, often the juvenile segment, is
unobservable. In addition, sampling error can be extreme or
changing from year to year as methods and personnel change. In
this paper, I introduce a slope method for estimating population
parameters in the face of these two problems. The main advan-

Fig. 5. Effect of severe sampling error on estimates of the mean rate of
population decline, l. Note that the scale (Top) is much larger, because of
larger errors associated with the direct method. See Fig. 3 for a description of
the boxplots and sampling-error types.

Fig. 6. Effect of parameter estimates on the probability of a 90% decline in
a given time horizon for salmon (Top), sea turtles (Middle), and petrels
(Bottom). On the Left, the parameters were calculated by using the direct
method (Eq. 2) from corrupted age- or stage-specific counts. On the Right, the
parameters were estimated by using the slope method (Eq. 5). The solid lines
show the median absolute difference between the probability of a 90%
decline calculated with the corrupted counts vs. that calculated with the true
population counts. The dashed lines show the range of 75% of the differences.
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tage of this method is that it allows estimates of rates and risks
of population decline with a well established tool (diffusion
approximations) by using age- or stage-specific censuses that are
corrupted with sampling error. Previously, the parameters for
simple count-based extinction analyses could not be estimated
with this common type of data.

One of the interesting features of the slope method is its ability
to separate environmental variance from sampling error vari-
ance by using the different statistical properties of each, even
when the sampling error is severe, e.g., orders of magnitude
greater than the environmental variance. Previous methods have
used strategies that partition the two sources of variability when
the magnitude of the sampling-error variance is known or the
ratio to the environmental variance is known (13–16). However,
it is uncommon in conservation settings that the magnitude of
the sampling error, absolute or relative, is known. Our conse-
quent inability to estimate environmental variance in the face of
sampling error variance has been one of the greatest obstacles to
the estimation of parameters for population extinction analyses.
The slope method presents a different strategy, separating the
environmental variance from much larger sampling-error vari-
ance, by observing that the variance of the ratio of logarithm
counts separated by n years should be governed by the function
(environmental variancezn 1 sampling-error variance).

Like any model, the application of a diffusion approximation
can be abused, and its success depends on certain assumptions.
It, or any other population viability analysis, is likely to encoun-
ter troubles if there are substantial environmental trends or if
variability does not conform to some well behaved distribution
like a lognormal distribution. Fortunately, both of these assump-
tions can be tested readily. More problematic is the question of
density dependence. This possibility can be tested (17), although,
should populations grow, they will obviously climb out of the
region of no density dependence. Conversely, if populations
continue to shrink to only a handful of individuals, they are likely
to enter a region of density depensation (or Allee effects). An
oft-mentioned concern is autocorrelation in the environmental
variability. The behavior of stochastic exponential population
processes with correlated environmental variability is discussed
in refs. 1 and 18. In short, the same diffusion approximation is
valid for correlated variance. The m parameter is unaffected but
the s2 estimate must be increased by the level of correlation.
Methods for estimating s2 in short time series with correlated
noise are covered in ref. 18. In its current form, the slope method
assumes that the environmental noise is relatively uncorrelated
and will underestimate s2 in time series with correlated noise.
However, keep in mind that the slope method is used in

situations where nonenvironmental variance is very high, in
which case s2 will tend to be overestimated.

Even when all of the assumptions are met, one needs to be
cautious when interpreting and using the risk metrics estimated
by simple diffusion approximations. Probabilities of reaching a
specific threshold (e.g., extinction) have been criticized harshly,
because they tend to be biased and have large confidence
intervals for short or error-ridden data sets (5, 6). In the
examples here, the slope method removed much of the bias in the
estimated probability of a 90% decline within a given time frame,
but the estimates were highly variable for two of the three
species. Success at estimating probabilities for one species,
salmon, suggests that estimating probabilities of hitting thresh-
olds (such as extinction) is not necessarily doomed. It may be
possible to delineate regions of parameter space [m, s2, time
horizon, time-series length] where estimates of extinction prob-
ability are likely to be poor. Previously, this region would have
included the entire parameter space for error-ridden data. The
methods developed here considerably shrink the region of poor
estimates.

On the other hand, the reliance on a risk metric with recal-
citrant estimation problems is difficult to justify when an equally
useful parameter, l, the expected mean annual rate of popula-
tion change, is readily available and is well estimated, even with
very poor data. Without pretending to predict an extinction risk,
l itself provides some answers to the question, ‘‘How bad is it?’’
If l is low, populations generally are at greater risk and will
require larger improvements in survival or fecundity to mitigate
the risk. In addition, the lower l and the smaller the initial
population size, the less time there is to ‘‘wait and learn more’’
before taking action. In addition, for threatened and endangered
populations, a l greater than 1 (headed toward recovery) is the
legal imperative for management. This is not to argue that l
captures the same aspects of risk that probability of extinction
does, or that probabilities of extinction should be abandoned.
Small populations with l greater than 1 but high environmental
variability will still have high extinction risks. But until estimation
methods are improved further, numerical estimates of the prob-
ability to hit a given threshold such as extinction will be dubious
for many species (but not all). In those cases, where probability
estimates are expected to be poor, I believe that l is the more
useful risk metric. It is certainly the most reliably estimated.
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