Appendix A. Raw data tables

Table A1. The raw data used for the central Gulf of Alaska.

Sample size for J/T metric # of measurements Pup count¹ J/T metric⁶ Non-pup count (# of haul-outs) Year 24678^2 1976 no data no data n.a. 1977 no data no data no data n.a. 27155⁷ 1978 17835 no data n.a. 28460^7 1979 19886 no data n.a. 1980 no data no data no data n.a. 1981 no data no data no data n.a. 1982 no data no data no data n.a. 1983 no data no data no data n.a. 1984 no data 15019 no data n.a. 19002^2 1985 0.3788 no data 7182 (13) 1986 no data 11598 no data n.a. 1987 no data no data no data n.a. 1988 no data no data no data n.a. 1989 8552^{2} 6394 0.4843 3039 (11) 7050^{2} 1990 4648 0.5025 2752 (16) 6273^{2} 1991 4057 0.4801 2468 (16) 5721² 1992 3646 0.5255 2409 (19) 3176 1993 no data no data n.a. 1994 4520^{3} 2831 0.3706 2536 (19) 1995 no data no data no data n.a. 3915^{3} 1996 no data 0.3698 1971 (17) 3352^{3} 1997 2056 0.4007 1924 (15) 3467⁴ 1876 1998 0.4095 2090 (16) 1999 no data no data no data n.a. 3180^{4} 2000 0.4769 1675 2489 (17) 2001 no data 1540 no data n.a. 3366⁴ 2002 1608 0.4483 2237 (18) 2003 no data no data no data n.a. 2004 3055^{5} 1578 no data n.a.

1. Based on the sum of the Marmot, Sugarloaf, Chowiet, Chirokof, and Outer Island rookery's pup counts. Table 8 in Fritz, L. W. and C. Stinchcomb. 2005. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) in the western stock in Alaska, June and July 2003 and 2004. U.S. Department of Commerce., NOAA Tech.

- Memo. NMFS-AFSC-153, 56 p. and Sease, J. L., J. P. Lewis, D. C. McAllister, R. L. Merrick and S. M. Mello. 1993. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) in Southeast Alaska, the Gulf of Alaska, and Aleutian Islands during June and July 1992. U.S. Department of Commerce., NOAA Tech. Memo. NMFS-AFSC-17, per interpolation discussed in supplementary methods. The 1978 Outer Island, pup count was interpolated (interpolated value = 843) since the actual count was a rough estimate from a boat rather than a ground count.
- 2. The nonpup count here is the nonpup count for trend rookeries and haulouts. Table 4 in Sease, J. L., J. P. Lewis, D. C. McAllister, R. L. Merrick and S. M. Mello. 1993. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) in Southeast Alaska, the Gulf of Alaska, and Aleutian Islands during June and July 1992. U.S. Department of Commerce., NOAA Tech. Memo. NMFS-AFSC-17.
- Table 4 in Sease, J. L., and T. R. Loughlin. 1999. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) in Alaska, June and July 1997 and 1998. U.S. Department of Commerce., NOAA Tech. Memo. NMFS-AFSC-100.
- 4. Table 3 in Sease, J. L., and C. J. Gudmundson. 2002. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) from the western stock in Alaska, June and July 2001 and 2002. U.S. Department of Commerce., NOAA Tech. Memo. NMFS-AFSC-100.
- 5. Table 4 in Fritz, L. W. and C. Stinchcomb. 2005. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) in the western stock in Alaska, June and July 2003 and 2004. U.S. Department of Commerce., NOAA Tech. Memo. NMFS-AFSC-153. This is the count adjusted for the increased accuracy of the new medium-format

photography which replaced the 35mm photographs used previously. This adjustment is based on a cross-validation discussed in Fritz and Stinchcomb (2005). The unadjusted count was 2944.

- 6. The *J/T* measurement method was initially presented in Holmes and York (2003). The measurements listed here do not exactly match those in Holmes and York (2003) since more haul-out measurements were taken to supplement those used in that paper.
- 7. Interpolated based on rookery only counts these years.

Table A2. The raw data used for the western Gulf of Alaska. Footnote references are the same as for Table A1 except where supplemental information is added below table.

Year	Non-pup count	Pup count ¹	<i>J/T</i> metric ⁶	Sample size for J/T metric # of measurements (# of haul-outs)
1976	8311 ²	no data	no data	n.a.
1977	no data	no data	no data	n.a.
1978	15229 ⁷	no data	no data	n.a.
1979	13227 12128^{7}	9351	no data	n.a.
1980	no data	no data	no data	
1980	no data	no data	no data	n.a.
				n.a.
1982	no data	no data	no data	n.a.
1983	no data	no data	no data	n.a.
1984	no data	5700	no data	n.a.
1985	6275^2	4985	0.3997	3225 (7)
1986	no data	no data	no data	n.a.
1987	no data	no data	no data	n.a.
1988	no data	no data	no data	n.a.
1989	3908^{2}	2771	0.4356	808 (6)
1990	3915^{2}	2271	0.4673	1130 (6)
1991	3734^{2}	2036	0.4608	1569 (10)
1992	3720^{2}	1879	0.5015	1960 (13)
1993	no data	1857	no data	n.a.
1994	3982^{3}	1662	no data	n.a.
1995	no data	no data	no data	n.a.
1996	3741^{3}	1605	0.4247	3567 (17)
1997	3633^{3}	no data	0.4337	3525 (15)
1998	3361 ⁴	1493	0.3927	2865 (16)
1999	no data	no data	no data	n.a.
2000	2840^{4}	1451	0.4443	1908 (17)
2001	no data	1466	no data	n.a.
2002	32214	1487	0.4273	1898 (18)
2003	no data	1432	no data	n.a.
2004	3456 ⁵	1593	no data	n.a.

^{1.} Pup count is the sum of counts on the Atkins, Chernabura, Clubbing Rocks and

Pinnacle Rocks rookeries.

Table A3. The raw data for the eastern Aleutian Islands. Footnote references are the same as for Table A1 except where supplemental information is added below table.

Sample size for J/T metric # of measurements Pup count¹ J/T metric⁶ Year Non-pup count (# of haul-outs) 19769² 1975 no data no data n.a. 1976 19743 no data no data n.a. 1977 19195 no data no data n.a. 1978 no data no data no data n.a. 1979 no data no data no data n.a. 1980 no data no data no data n.a. 1981 no data no data no data n.a. 1982 no data no data no data n.a. 1983 no data no data no data n.a. 1984 no data no data no data n.a. 7505^{2} 1985 4778 0.4758 2717 (12) 1986 no data no data no data n.a. 1987 no data no data no data n.a. 1988 no data no data no data n.a. 3032^{2} 1989 no data 0.3674 215 (4) 3801^{2} 1990 2075 0.5169 563 (3) 4231^{2} 1991 2119 0.4687 879 (11) 4839^{2} 1992 0.4789 1564 (14) no data 1993 no data 1879 no data n.a. 4421^{3} 1994 1756 no data n.a. 1995 no data no data no data n.a. 4716^{3} 1996 no data 0.4232 1635 (16) 1997 no data 0.4709 no data 2064 (15) 3847^{4} 1998 1474 0.4769 2661 (14) 1999 no data no data no data n.a. 3840^4 2000 1516 0.4995 1996 (14) 2001 no data no data no data n.a. 3956⁴ 2002 1525 0.4400 2234 (19) 2003 no data no data no data n.a. 4707^{5} 2004 1744 no data n.a.

^{1.} Pup count is a sum of pup counts on the Adugak, Akun, Akutan, Bogoslof, and

Ugamak rookeries.

Appendix B. Effect of haul-out sites on the J/T metric

Figure B1. The *J/T* metric using only those haul-outs that were surveyed every year (left panels), using those surveyed regularly in the 1990s (middle panels), and using every photographed haul-out (right panels).

Appendix C. Life-history matrices

The 32 x 32 female-only age-structured life-history matrix for Steller sea lions (A in Eq. 3 in the main text) is shown in Table 1 (main text). The matrix is a birth-pulse Leslie matrix where row 1 column i is the number of 1-month old pups produced by age i+1 females multiplied by the survival rate from age i to age i+1. Thus when the matrix multiplication, $\vec{N}_{t+1} = \mathbf{A} \times \vec{N}_t$, is performed, the first element of \vec{N}_{t+1t} is the female pup numbers (at 1-month of age) in year t+1. Rows i, i > 1, in the matrix contain the survivorships from age i to i+1, along the diagonal. The s_i and f_i terms in A have been estimated different ways in different published studies based on data from 1975 to 1978 on Marmot Island, and these different estimates give rise to the four different life-history matrices are used in this study. Although each matrix is based on a published matrix, there are some slight modifications, namely an increasing juvenile survivorship pattern across all matrices and inclusion of neonate survivorship. The number of female 1-month old pups produced by females of age i equals f_i , the late-term pregnancy rate times 0.5 to get female fetuses only, multiplied by s_n , neonate survivorship from age 0 (late-term fetus) to age 1-month when the pup survey occurs. This early pup survivorship was estimated as 0.949 from the average of the fraction of dead pups observed during the 1978 and 1979 pup counts in the CGOA: 492 (dead) to 6720 (live) in 1978 and 526 (dead) to 14763 (live) in 1978. The rest of the s_i and f_i terms which specify the survivorship and fecundity schedule for each matrix are discussed below and are given in Table C1.

A matrix based on Calkins and Pitcher (1982) – CP matrix

For this matrix, the survivorships, s_i , were those estimated originally by Calkins and Pitcher (1982) as presented in their Table 24. These estimates are from the agedistribution observed in the longitudinal sample of Steller sea lions around Marmot Island in the 1970s, which was done by shooting a random sample of animals from the population. Given their smaller size and lack representation near rookeries, individuals younger than 3 years were not equally sampled and were excluded from the analyses. Age was determined by counting the enamel layers in cross-sections of the canine teeth, and pregnancy rates were determined from pregnancies observed in the sampled females. The survivorships in Table C1 are taken from York (1994) Table 1 with the exception of s_0 , s_1 and s_2 . Juvenile survivorship could not be estimated directly from the data. Instead, York (1994) and Calkins and Pitcher (1982), set juvenile survivorship such that the resulting matrix would be stable (maximum eigenvalue equals 1.0). York (1994) made juvenile survivorship equal for the 1st three years while Calkins and Pitcher (1982) had juvenile survivorship increasing with age. In this analysis, we used Calkins and Pitcher's method, which eliminates a sudden jump from older juvenile survival to young adult survival. Thus s_1 and s_2 increase linearly from s_0 towards s_3 , and s_0 is set so that the matrix is stable. Late-term pregnancy rate, f_i , is based on 'percent mature' x 'birth rate' in Table 26 in Calkins and Pitcher (1982) x 0.5 pup sex ratio. 'birth rate' is not precisely birth rate, however, rather it is late-term pregnancy rate. The f_i given in Table C1 are from York (1994), Table 1. Note that the age or i column in both York (1994) and Calkins and Pitcher (1982) is confusing. Early maturing females first become mature at age 3 but give birth at age 4, so f_i is 0 for age 0-3.

Winship and Trites (2006) used a very generic model of Steller sea lions based on the Calkins and Pitcher survivorship and fecundity schedules. The matrix (Table C1) has high adult survivorship, lower age 1-3 survivorship, and a uniform late-term pregnancy rate after age 5. For this study, we changed juvenile survivorship so that juvenile survivorship increased linearly from s_0 to s_4 as for the other matrices. If this is not done, the time-varying model can have the biologically odd behavior of high juvenile survivorship (age 1-3) followed by a sudden step-drop to a much lower survivorship at age 4. No animals are allowed to live beyond age 20 in this model, thus the model has fecundity senescence of a sort since no animals give birth after age 20.

Matrix based on York (1994)'s re-analysis of survivorship rates – Y matrix

The Calkins and Pitcher (1982) survivorships result in an equilibrium agedistribution that does not precisely fit the observed age-distribution. York (1994) reestimated the Calkins and Pitcher (1982) survivorships using a Weibull hazard model
which is a standard model for survivorship. The re-estimated survivorships result in an
age-distribution that closely matches the sampled cumulative age-distribution. Table C1
gives the re-estimated survivorship schedule.

There are two differences between the matrix used in this paper and the matrix published in York (1994) in Table 1 in that paper. York (1994) made juvenile survivorship equal for the 1st three years. Here, we used Calkins and Pitcher's method as above and allowed juvenile survivorship to increase with age. Thus s_1 and s_2 were set to increase linearly from s_0 towards s_3 , and s_0 adjusted so that the matrix is stable. The second difference is in the f_i terms. In the matrix described in York (1994), females

erroneously give birth the year that they become pregnant, whereas females give birth in the year after becoming pregnant. Thus the fecundities should be shifted forward by one year. This error is corrected in the f_i values given in Appendix A. This same error appears in the matrix given in Holmes and York (2003). This error does not change the conclusions of either paper, although it does change slightly the estimated natality rate in Holmes and York (2003).

Cited Literature

- Calkins, D. G., and K. W. Pitcher. 1982. Population assessment, ecology and trophic relationships of Steller sea lions in the Gulf of Alaska. Final Report 17, U.S. Department of Commerce, Washington, D. C.
- Holmes, E. E., and A. E. York. 2003. Using age structure to detect impacts on threatened populations: a case study using Steller sea lions. Conservation Biology **17**:1794-1806.
- Winship, A. J., and A. W. Trites. 2006. Risk of extripation of Steller sea lions in the Gulf of Alaska and Aleutian Islands: a population viability analysis based on alternative hypotheses for why sea lions declined in Western Alaska. Marine Mammal Science 23:124-155.
- York, A. E. 1994. The population dynamics of northern sea lions, 1975–1985. Marine Mammal Science **10**:38–51.

Table C1. Fecundity and survivorships terms used in the four life-history matrices. Matrix codes refer to matrices based on different papers: WT (Winship and Trites 2006), CP (Calkins and Pitcher 1982), Y (York 1994), and HFYS (this paper). In all matrices, $s_n = 0.949$.

i	f_i	f_i	f_i	f_i	S_i	s_i	s_i	S_i
age	WT	СР	Y	HFYS	WT	CP	Y	HFYS
0*	0	0	0	0	0.8001^3	0.7420^3	0.7680^3	0.7845^3
1	0	0	0	0	0.8334^{3}	0.7840^3	0.8221^3	0.8331^3
2	0	0	0	0	0.8667^3	0.8260^3	0.8761^3	0.8316^3
3	0	0	0	0	0.9	0.8680^{1}	0.9302^{1}	0.9302^{1}
4	0	0.1008^{1}	0.1008^{1}	0.0480^2	0.9	0.8790	0.9092	0.9092
5	0.315	0.17955	0.17955	0.1695	0.9	0.8880	0.8951	0.8951
6	0.315	0.26145	0.26145	0.2215	0.9	0.8930	0.8839	0.8839
7	0.315	0.315	0.315	0.27950	0.9	0.8980	0.8746	0.8746
8	0.315	0.315	0.315	0.3285	0.9	0.8740	0.8665	0.8665
9	0.315	0.315	0.315	0.3285	0.9	0.8990	0.8593	0.8593
10	0.315	0.315	0.315	0.3285	0.9	0.8930	0.8527	0.8527
11	0.315	0.315	0.315	0.3885	0.9	0.8960	0.8468	0.8468
12	0.315	0.315	0.315	0.3885	0.9	0.8950	0.8412	0.8412
13	0.315	0.315	0.315	0.3885	0.9	0.8950	0.8360	0.8360
14	0.315	0.315	0.315	0.3885	0.9	0.8950	0.8312	0.8312
15	0.315	0.315	0.315	0.3885	0.9	0.8950	0.8266	0.8266
16	0.315	0.315	0.315	0.3885	0.9	0.8950	0.8223	0.8223

17	0.315	0.315	0.315	0.2570	0.9	0.8950	0.8182	0.8182
18	0.315	0.315	0.315	0.2570	0.9	0.8950	0.8142	0.8142
19	0.315	0.315	0.315	0.2570	0.9	0.8950	0.8105	0.8105
20	0.315	0.315	0.315	0.2570	0.9	0.8950	0.8069	0.8069
21	0.315	0.315	0.315	0.2570	0	0.8950	0.8034	0.8034
22	0	0.315	0.315	0	0	0.8950	0.8001	0.8001
23	0	0.315	0.315	0	0	0.8950	0.7968	0.7968
24	0	0.315	0.315	0	0	0.8950	0.7937	0.7937
25	0	0.315	0.315	0	0	0.8950	0.7907	0.7907
26	0	0.315	0.315	0	0	0.8950	0.7878	0.7878
27	0	0.315	0.315	0	0	0.8950	0.7850	0.7850
28	0	0.315	0.315	0	0	0.8950	0.7822	0.7822
29	0	0.315	0.315	0	0	0.8950	0.7795	0.7795
30	0	0.315	0.315	0	0	0.8950	0.7769	0.7769
31	0	0.315	0.315	0	0	0	0	0

 f_i is the fraction of age i females with late-term pregnancies x 0.5 to get female fetuses only (note age i females mate and become impregnated at age i-1). s_i is the survivorship from age i to i+1.

- 1. Table 1 from York (1994). Note that in Table 1 (York 1994) the age 'To' column represents the numbering for f_i , whereas the age 'From' column represents the numbering for s_i .
- 2. Re-estimated in this paper from the original 1970s data. See notes above.

^{*} age 0 denotes 1-month of age which is the age of pups when the survey occurs.

3.	s_1 and s_2 increase linearly from s_0 towards s_3 , and s_0 is set so that the dominant
	eigenvalue of the matrix is equal to 1 (meaning a stable population).

Appendix D. Parameter estimates and AICc values for model fits

Table D1. Maximum-likelihood estimates of the historical survivorship and birth rate relative to pre-decline levels. The number of free parameters, K, is the number of scaling factors, 3, times the number of time periods, 3 to 4, plus 3 constants, p_1 , p_2 , p_3 , and the 3 variances in the likelihood function. $p_{j,k}$ is the scaling factor for juvenile survivorship in time period k. Juvenile survivorship in time period k is (pre-decline juvenile survivorship) x $p_{j,k}$. $p_{a,k}$ is the scaling factor for adult survivorship in time period k. $p_{f,k}$ is the scaling factor for birth rate in time period k. For all models, the first time period starts in 1983, and the second starts in 1988. The third and fourth (if present) start in the first and second years in column 1, respectively. The Leslie matrices are described in Appendix C.

	Time	Leslie														
	periods	matrix	ΔAIC_c	K	$p_{j,1}$	$p_{j,2}$	$p_{j,3}$	$p_{j,4}$	$p_{f,1}$	$p_{f,2}$	$p_{f,3}$	$p_{f,4}$	$p_{a,1}$	$p_{a,2}$	$p_{a,3}$	$p_{a,4}$
_	1997	HFYS	5.454	15	0.436	0.877	1.241	-	0.908	0.841	0.813	-	0.879	0.921	0.963	-
	1997	Y	7.884	15	0.421	0.882	1.267	-	0.891	0.846	0.809	-	0.89	0.913	0.957	-
	1997	CP	15.133	15	0.443	0.93	1.311	-	0.924	0.873	0.83	-	0.872	0.892	0.952	-
	1997	WT	4.9	15	0.506	0.928	1.25	-	0.931	0.86	0.813	-	0.863	0.902	0.965	-
	1998	HFYS	7.148	15	0.43	0.911	1.241	-	0.903	0.839	0.787	-	0.881	0.918	0.981	-
	1998	Y	10.631	15	0.41	0.911	1.267	_	0.885	0.844	0.81	-	0.893	0.91	0.971	-

1998	CP	17.332	15	0.442	0.998	1.311	-	0.929	0.902	0.84	-	0.869	0.882	0.963	-
1998	WT6	10.993	15	0.504	0.952	1.25	-	0.934	0.869	0.844	-	0.863	0.899	0.971	-
1999	HFYS	12.193	15	0.39	0.901	1.241	-	0.897	0.829	0.813	-	0.885	0.925	0.996	-
1999	Y	17.131	15	0.454	0.955	1.267	-	0.899	0.871	0.872	-	0.886	0.897	0.976	-
1999	CP	22.312	15	0.393	0.991	1.311	-	0.913	0.872	0.879	-	0.878	0.888	0.974	-
1999	WT	17.42	15	0.487	0.945	1.25	-	0.925	0.844	0.865	-	0.866	0.905	0.988	-
1992;1997	HFYS	0	18	0.42	0.734	0.565	0.935	0.869	0.762	0.703	0.641	0.899	0.928	1.002	1.068
1992;1997	Y	3.46	18	0.465	0.787	0.603	0.967	0.882	0.805	0.701	0.613	0.894	0.916	0.988	1.053
1992;1997	CP	6.385	18	0.481	0.818	0.621	0.998	0.903	0.827	0.725	0.628	0.882	0.889	0.965	1.029
1992;1997	WT	6.197	18	0.453	0.731	0.592	0.894	0.887	0.755	0.67	0.585	0.884	0.921	0.989	1.077
1993;1997	HFYS	7.341	18	0.42	0.739	0.591	0.986	0.871	0.754	0.724	0.657	0.898	0.934	1	1.053
1993;1997	Y	10.365	18	0.493	0.827	0.666	1.054	0.89	0.82	0.732	0.645	0.889	0.908	0.978	1.029
1993;1997	CP	14.262	18	0.506	0.85	0.675	1.08	0.91	0.834	0.754	0.657	0.877	0.887	0.961	1.013
1993;1997	WT	9.436	18	0.491	0.794	0.682	0.998	0.905	0.783	0.707	0.621	0.876	0.915	0.976	1.045
1992;1998	HFYS	4.161	18	0.42	0.74	0.622	0.974	0.871	0.761	0.7	0.646	0.899	0.929	0.998	1.075

1992;1998	Y	8.877	18	0.451	0.783	0.635	0.982	0.874	0.784	0.684	0.615	0.899	0.922	0.986	1.069
1992;1998	CP	9.504	18	0.428	0.772	0.611	0.968	0.882	0.78	0.69	0.608	0.893	0.901	0.969	1.056
1992;1998	WT	17.248	18	0.552	0.778	0.798	1.104	0.909	0.792	0.719	0.67	0.874	0.902	0.958	1.031
1993;1998	HFYS	10.82	18	0.395	0.712	0.627	0.966	0.864	0.738	0.708	0.647	0.902	0.941	1.006	1.075
1993;1998	Y	16.075	18	0.523	0.868	0.823	1.191	0.897	0.835	0.757	0.706	0.885	0.898	0.951	1.005
1993;1998	CP	17.738	18	0.479	0.828	0.716	1.085	0.896	0.801	0.727	0.649	0.885	0.893	0.959	1.03
1993;1998	WT	17.327	18	0.543	0.829	0.869	1.164	0.92	0.815	0.747	0.697	0.869	0.902	0.952	1.011
1992;1999	HFYS	12.072	18	0.433	0.731	0.678	1.034	0.868	0.757	0.694	0.668	0.898	0.927	0.998	1.075
1992;1999	Y	17.105	18	0.47	0.779	0.684	1.013	0.88	0.794	0.679	0.628	0.895	0.918	0.99	1.075
1992;1999	CP	16.272	18	0.378	0.695	0.578	0.897	0.871	0.753	0.653	0.593	0.9	0.911	0.987	1.081
1992;1999	WT	22.803	18	0.594	0.796	0.935	1.25	0.923	0.825	0.776	0.748	0.868	0.888	0.938	1.005
1993;1999	HFYS	15.595	18	0.409	0.705	0.691	1.013	0.865	0.738	0.703	0.663	0.901	0.939	1.007	1.075
1993;1999	Y	20.396	18	0.55	0.867	0.937	1.266	0.909	0.86	0.792	0.752	0.879	0.89	0.939	0.992
1993;1999	СР	22.458	18	0.597	0.916	0.964	1.311	0.943	0.904	0.827	0.778	0.862	0.866	0.927	0.983
1993;1999	WT	21.272	18	0.574	0.828	0.964	1.25	0.93	0.838	0.786	0.746	0.865	0.894	0.942	1

Table D2. Maximum-likelihood estimates of the constants and variances for each model. See text for explanation of the constants. p_1 translates to the expected average number (x 1000) of pre-decline female pups in the CGOA. The value, p_2 , from column 4 is the scaling factor that translates the nonpup trend count into the total (unobserved) number of nonpup females in the population: $(1/p_2)$ x nonpup trend count = total number (unobserved) of nonpup females. p_3 is the scaling factor for the juvenile-fraction metric (see text).

						σ^2	σ^2	σ^2	
	Time	Leslie	p_1			nonpup	pup	J/T	
	periods	matrix	(÷1000)	p_2	p_3	(x1000)	(x1000)	(x1000)	
_	1997	HFYS	9.52	0.458	0.359	3.097	0.914	2.761	
	1997	Y	9.50	0.478	0.368	3.121	0.892	3.555	
	1997	CP	9.52	0.498	0.379	3.662	1.183	3.68	
	1997	WT	9.53	0.446	0.37	3.659	0.794	2.521	
	1998	HFYS	9.53	0.456	0.359	4.362	0.811	2.392	
	1998	Y	9.51	0.478	0.369	4.744	0.749	3.254	
	1998	CP	9.52	0.5	0.405	5.575	0.955	3.431	

1998	WT	9.50	0.452	0.377	5.66	0.873	2.227
1999	HFYS	9.51	0.462	0.347	5.497	0.8	2.81
1999	Y	9.50	0.482	0.396	6.719	0.847	3.15
1999	СР	9.51	0.502	0.387	7.452	0.891	4.023
1999	WT	9.51	0.452	0.364	7.683	0.908	2.409
1992;1997	HFYS	9.52	0.458	0.229	2.403	0.934	0.527
1992;1997	Y1994	9.52	0.472	0.253	2.426	1.195	0.501
1992;1997	СР	9.53	0.496	0.254	2.742	1.312	0.483
1992;1997	WT	9.52	0.45	0.22	2.762	1.148	0.571
1993;1997	HFYS	9.53	0.456	0.241	2.538	0.917	0.975
1993;1997	Y	9.53	0.47	0.287	2.534	1.178	0.901
1993;1997	СР	9.54	0.494	0.284	2.956	1.257	0.946
1993;1997	WT	9.53	0.446	0.259	2.77	0.992	0.937
1992;1998	HFYS	9.51	0.458	0.233	3.158	0.883	0.576
1992;1998	Y	9.52	0.474	0.246	3.845	1.106	0.49

1992;1998	CP	9.52	0.498	0.224	4.279	1.062	0.475
1992;1998	WT	9.53	0.444	0.282	3.175	1.002	1.56
1993;1998	HFYS	9.52	0.458	0.227	3.132	0.912	1.019
1993;1998	Y	9.53	0.468	0.331	3.359	0.938	1.425
1993;1998	СР	9.53	0.494	0.269	4.164	1.088	1.001
1993;1998	WT	9.54	0.444	0.31	3.051	0.971	1.729
1992;1999	HFYS	9.54	0.456	0.242	3.219	0.935	1.048
1992;1999	Y	9.52	0.472	0.255	3.489	1.527	0.737
1992;1999	CP	9.52	0.5	0.194	3.712	1.418	0.702
1992;1999	WT	9.53	0.444	0.328	3.125	0.949	2.852
1993;1999	HFYS	9.53	0.456	0.237	2.813	1.026	1.543
1993;1999	Y	9.52	0.47	0.364	2.976	0.999	2.287
1993;1999	CP	9.50	0.494	0.377	3.006	1.215	2.074
1993;1999	WT	9.53	0.444	0.338	2.849	0.972	2.724

Appendix E. Summary of studies with estimates of percent time animals are resting on land

Table E1. Summary of studies which report the proportion of time onshore for Steller sea lions. Some studies do not adjust for the tendency of Steller sea lions to forage at night and haul-out on land during the day. In this case, the proportion of time onshore is an underestimate of daytime sightability. All studies are from the Gulf of Alaska except Higgins et al. (1988).

Reference	Type of animal	Proportion of time onshore	Year, Location, Season, Method
Brandon (2000, Table 3.2)	Females nursing pups on rookery	63%1	1993, Chirikof Is. (CGOA), June/July Satellite tracking
Call et al. (2007), K. Call, pers. comm	Juveniles age 11-25 months	43% ²	CGOA, June/July Satellite tracking
Higgins et al. (1988, Figure 2)	Females nursing 8-14 day old pups on rookery Females nursing 15-21 day old pups on rookery Females nursing 35-47 day old pups on rookery	$60\%^{2}$ $40\%^{2}$ $30\%^{2}$	1983, Ana Nuevo Is., CA, June/July Observation of focal animals
Loughlin et al. (2003, Table 1)	Juveniles age 11-12 mos. (3 animals)	50% ²	1994-2000, GOA & Aleutians, May/June Satellite tracking
Maniscalco et al. (2006)	Adult females on rookery: pups < ~60 days old Adult females on rookery: pups > ~60 days old	59% ¹ 36% ¹	June 1-August 18. 2001-2004, CGOA August 18 – Nov 1, 2002-2004, CGOA Observation of focal animals on rookery

Merrick and Loughlin (1997)	Females nursing pups on rookery (7 animals) Females nursing yearling (2 animals) and females with no pup (3 animals)	48.5% ¹ 10.1% ¹	1988-1993, GOA & Aleutians, June/July 1988-1993, GOA&Aleutians, Nov-March Satellite tracking
Milette and Trites (2003, Table 2 and Figure 3) Milette (1999, Table 3.2)	Females nursing 15-day old pups on rookery Females nursing 47-day old pups on rookery	66% ¹ 40% ¹	1994/1995, Sugarloaf Is. (CGOA), May- Aug Video analysis of marked female attendance
Trites and Porter (2002, Table 1)	Females nursing yearlings Yearlings (19-22 mos)	$\frac{22\%^{1}}{40\%^{2}}15\%^{2}$	1996, Forrester Is. (EGOA), January-April Satellite tracking

- 1. No correction for daylight versus night attendance patterns.
- 2. Corrected for daylight versus night attendance pattern

REFERENCES

- Brandon, E. A. A. 2000. Maternal investment in Steller sea lions in Alaska. Ph.D. thesis. Texas A&M University, Galveston.
- Call, K. A., B. S. Fadely, A. Greig, and M. J. Rehberg. 2007. At-sea and on-shore cycles of juvenile Steller sea lions (*Eumetopias jubatus*) derived from satellite dive recorders: A comparison between declining and increasing populations. Deep-Sea Research **in press**.
- Higgins, L. V., D. P. Costa, A. C. Huntley, and B. J. L. Boleuf. 1988. Behavioral and physiological measurements of maternal investment in the Steller se lion, *Eumetopias jubatus*. Marine Mammal Science **4**:44-58.

- Loughlin, T. R., J. T. Sterling, R. L. Merrick, J. L. Sease, and A. E. York. 2003. Diving behavior of immature Steller sea lions (*Eumetopias jubatus*). Fishery Bulletin **101**:566-582.
- Maniscalco, J. M., P. Parker, and S. Atkinson. 2006. Interseasonal and interannual measures of maternal care among individual Steller sea lions (*Eumetopias jubatus*). Journal of Mammalogy **87**:304-311.
- Merrick, R. L., and T. Loughlin. 1997. Foraging behavior of adult female and young-of-year Steller sea lions in Alaskan waters.

 Canadian Journal of Zoology **75**:776-786.
- Milette, L. L. 1999. Behaviour of lactating Steller sea lions (*Eumetopias jubatus*) during the breeding season: a comparison between a declining and stable population in Alaska. M.S. thesis. University of British Columbia.
- Milette, L. L., and A. W. Trites. 2003. Maternal attendance patterns of Steller sea lions (*Eumetopias jubatus*) from stable and declining populations in Alaska. Canadian Journal of Zoology **81**:340–348.
- Trites, A. W., and B. T. Porter. 2002. Attendance patterns of Steller sea lions (*Eumetopias jubatus*) and their young during winter. Journal of Zoology **256**:547-556.