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Background on Fisher Information is in Part I.

Computing Fisher Information

So how do we compute I(θ̂) or I(θ̂, y) (in Part I)? In particular, can we use the analytical derivatives of the
full log-likelihood that are part of the EM algorithm? Many researchers have worked on this idea. My notes
here were influenced by EM Algorithm: Confidence Intervals which is on the same topic. This blog post is
mainly a discussion of the result by Louis (1982) on calculation of the Fisher Information matrix from the
‘score’ function that one takes the derivative of in the M-step of the EM algorithm.

The ‘score’ function used in the EM algorithm for a MARSS model is

Q(θ|θj) = EX|y,θj
[log fXY (X, y|θ)] (1)

It is the expected value taken over the hidden random variable X of the full data log-likelihood at Y = y
(3); full means it is a function of all the random variables in the model, which includes the hidden or latent
variables. x, y is the full ‘data’, the left side of the x state equation and the y observation equation. We take
the expectation of this full data likelihood conditioned on the observed data y and θj which is the value of θ
at the j-th iteration of the EM algorithm. Although Q(θ|θj) looks a bit hairy, actually the full-data likelihood
may be very easy to write down and considerably easier than the data likelihood f(y|θ). The hard part is
often the expectation step, however for MARSS models the Kalman filter-smoother algorithm computes the
expectations involving X and Holmes (2010) shows how to compute the expectations involving Y , which
comes up when there are missing values in the dataset (missing time steps, say).

In the M-step of the EM algorithm, we take the derivative of Q(θ|θj) with respect to θ and solve for the θ
where

∂Q(θ|θj)
∂θ

= 0. (2)

It would be nice if one could use the following to compute the observed Fisher Information

− ∂2Q(θ|θ̂)
∂θ2

∣∣∣∣∣
θ=θ̂

(3)

Q(θ|θ̂) is our score function at the end of the EM algorithm, when θ = θ̂. Q is a function of θ, the model
parameters, and will have terms like E(X|Y = y, θ̂), the expected value of X conditioned on Y = y and the
MLE. Those are the expectations coming out of the Kalman filter-smoother. We take the second derivative
of Q with respect to θ. That is straight-forward for the MARSS equations. You take the first derivative of Q
with respect to θ, which you already have from the update or M-step equations, and take the derivative of
that with respect to θ.

Conceptually, this

− ∂2Q(θ|θ̂)
∂θ2

∣∣∣∣∣
θ=θ̂

=
∂2EX|y,θ̂[log f(X, y|θ)]

∂θ2

∣∣∣∣∣
θ=θ̂

(4)
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looks a bit like the observed Fisher Information:

I(θ̂, y) = − ∂2 log f(y|θ)
∂θ2

∣∣∣∣
θ=θ̂

(5)

except that instead of the data likelihood f(y|θ), we use the expected likelihood EX|Y,θ̂[log fXY (X, y|θ)]. The
expected likelihood is the full likelihood with the X and XX> random variables replaced by their expected
values assuming θ = θ̂ and Y = y. The problem is that EX|Y,θ[log f(X, y|θ)] is a function of θ and by fixing
it at θ̂ we are not accounting for the uncertainty in that expectation. What we need is something like

Information with X fixed at expected value - Information on expected value of X

We account for the fact that we have over-estimated the information from the data by treating the hidden
random variable as fixed. The same issue arises when we compute confidence intervals using the estimate of
the variance without accounting for the fact that this is an estimate and thus has uncertainty. Louis (1982)
and Oakes (1999) are concerned with how to do this correction or adjustment.

Louis 1982 approach

The following is equations 3.1, 3.2 and 3.3 in Louis (1982) translated to the MARSS case. In the MARSS
model, we have two random variables, X(t) and Y (t). The joint distribution of {X(t), Y (t)} conditioned on
X(t− 1) is multivariate normal. Our full data set includes all time steps, {X,Y }.

Let’s call the full state at time t {x, y}, the value of the X and Y at all times t. The full state can be an
unconditional random variable, {X,Y } or a conditional random variable {X, y} (conditioned on Y = y. Page
227 near top of Louis 1982 becomes

λ(x, y, θ) = log{fXY (x, y|θ)} (6)

λ∗(y, θ) = log{fY (y|θ)} = log
∫
X

fXY (x, y|θ)dx (7)

f(.|θ) is the probability distribution of the random variable conditioned on θ. λ is the full likelihood; ‘full’
means is includes both x and y. λ∗ is the likelihood of y alone. It is defined by the marginal distribution of y
(1); the integral over X on the right side of 7. For a MARSS model, the data likelihood can be written easily
as a function of the Kalman filter recursions (which is why you can write a recursion for the information
matrix based on derivatives of λ∗; see Part III).

Next equation down. Louis doesn’t say this and his notation is not totally clear, but the expectation right
above section 3 (and in his eqn 3.1) is a conditional expectation. This is critical to know to follow his
derivation of equation 3.1 in the appendix. θj is his θ(0); it is the value of θ at the last EM iteration.

EX|y,θj
[λ(X, y, θ)] =

∫
X

λ(X, y, θ)fX|Y (x|Y = y, θj)dx (8)

My ‘expectation’ notation is a little different than Louis’. The subscript on the E shows what is being
integrated (X) and what are the conditionals.

The term fX|Y (x|Y = y, θj) is the probability of x conditioned on Y = y and θ = θj . The subscript on f
indicates that we are using the probability distribution of x conditioned on Y = y. For the EM algorithm,
we need to distinguish between θ and θj because we maximize with respect to θ not θj . If we just need the
expectation at θ, no maximization step, then we just use θ in f(.|θ) and the subscript on E.
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Before moving on with the derivation, notice that in 8, we fix y, the data. We are not treating that as a
random variable. We could certainly treat Eθj [λ({X, y}, θ)] as some function g(y) and consider the random
variable g(Y ). But Louis (1982) will not go that route. y is fixed. Thus we are talking about the observed
Fisher Information rather than the expected Fisher Information. The latter would take an expectation over
the possible y generated by our model with parameters at the MLE.

Derivation of equation 3.1 in Louis 1982

Now we can derive equation 3.1 in Louis (1982). I am going to combine the info in Louis’ section 3.1 and
the appendix on the derivation of 3.1. Before proceeding, Louis is using ‘denominator’ format for his matrix
derivations; I normally use denominator format but I will follow his convention here. θ is a column vector of
parameters and the likelihood f(.|θ) is scalar. Under ‘denominator format’, f ′(.|θ) = df(.|θ)/dθ) will be a
column vector. f ′′(.|θ) = d2f(.|θ)/dθdθ>) will be a matrix in Hessian format (the first dθ goes 1 to n down
columns and the second dθ does 1 to n across rows).

Take the derivative of 6 with respect to θ to define S(z, θ).

S(x, y, θ) = λ′(x, y, θ) = d log{fXY (x, y|θ)}
dθ

= df(x, y|θ)/dθ
f(x, y|θ) = f ′(x, y|θ)

f(x, y|θ) (9)

Take the derivative of the far right side of 7 with respect to θ to define S∗(y, θ). For the last step (far right), I
used fY (y|θ) =

∫
X
fXY (x, y|θ)dx, the definition of the marginal distribution [1], to change the denominator.

S∗(y, θ) = λ∗′(y, θ) =
d log

∫
X
fXY (x, y|θ)dx
dθ

=
∫
X
f ′XY (x, y|θ)dx∫

X
fXY (x, y|θ)dx =

∫
X
f ′XY (x, y|θ)dx
fY (y|θ) (10)

Now multiply the integrand in the numerator by fXY (x, y|θ)/fXY (x, y|θ). The last step (far right) uses 9.

∫
X

f ′XY (x, y|θ)dx =
∫
X

f ′XY (x, y|θ)fXY (x, y|θ)
fXY (x, y|θ) dx

=
∫
X

f ′XY (x, y|θ)
fXY (x, y|θ)fXY (x, y|θ)dx

=
∫
X

S(x, y, θ)fXY (x, y|θ)dx

(11)

We combine 10 and 11:

S∗(y, θ) =
∫
X
f ′XY (x, y|θ)dx
fY (y|θ)

=
∫
X

S(x, y, θ)fXY (x, y|θ)
fY (y|θ) dx

=
∫
X

S(x, y, θ)fX|Y (x|Y = y, θ)dx

(12)

The second to last step used the fact that fY (y|θ) does not involve x thus we can bring it into the integral.
This gives us fXY (x, y|θ)/fY (y|θ). This is the probability of x conditioned on Y = y (2).

The last step in the derivation of equation 3.1 is to recognize that the far right side of 12 is the conditional
expectation in 3.1. Louis does not actually write out the expectation in 3.1 and the notation is rather vague.
But the expectation in equation 3.1 is the conditional expectation on the far right side of 12.

3



S∗(y, θ) =
∫
X

S(x, y, θ)fX|Y (x|Y = y, θ)dx = EX|y,θ[S(X, y, θ)] (13)

using my notation for a conditional expectation which slightly different than Louis’. At the MLE, S∗(y, θ̂) = 0
since that is how the MLE is defined (it’s where the derivative of the data likelihood is zero).

Derivation of equation 3.2 in Louis 1982

The meat of Louis 1982 is equation 3.2. The observed Fisher Information matrix 5 is

I(θ, y) = B∗(y, θ) = −S′(x, y, θ) = −λ∗′′(y, θ) = −∂
2 log fY (y|θ)
∂θ∂θ>

(14)

The first 3 terms on the left are just show that all are notation that refers to the observed Fisher Information.
The 4th term is one of the ways we can compute the observed Fisher Information at θ and the far right term
shows that derivative explicitly.

We start by taking the second derivative of 6 with respect to θ to define B(x, y, θ). We use S′(z, θ) as written
in 9.

I(θ, x, y) = B(x, y, θ) = −λ′′(x, y, θ) = −S′(x, y, θ) =

−d[f ′XY (x, y|θ)/fXY (x, y|θ)]
dθ>

(15)

The transpose of dθ is because we are taking the second derivative d2l/dθdθ> (the Hessian of the log-likelihood);
dθdθ wouldn’t make sense as that that would be a column vector times a column vector.

To do the derivative on the far right side of 15, we first need to recognize the form of the equation. f ′XY (x, y|θ)
is a column vector and f(x, y|θ) is a scalar, thus the thing we are taking the derivative of has the form
−→
h (θ)/g(θ); the arrow over h is indicating that it is a (column) vector while g() is a scalar. Using the chain
rule for vector derivatives, we have

d(−→h (θ)/g(θ))
dθ>

= d
−→
h (θ)
dθ>

1
g(θ) −

−→
h (θ)
g(θ)2

g(θ)
dθ>

(16)

Thus we can write the equation for the negative of B(x, y, θ) as

−B(x, y, θ) =d(f ′XY (x, y|θ)/fXY (x, y|θ))
dθ>

=f ′′XY (x, y|θ)
fXY (x, y|θ) −

f ′XY (x, y|θ)f ′(z|θ)>
fXY (x, y|θ)2

=f ′′XY (x, y|θ)
fXY (x, y|θ) − S(x, y|θ)S(x, y|θ)>

(17)

Let’s return to 14 and take the derivative of λ∗′(y, θ) with respect to θ using the form shown in equation 10.
I have replaced the integral in the denominator by fY (y|θ) and used the same chain rule used for 17.
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λ∗′′(y, θ) =d
(∫

X

f ′XY (x, y|θ)dx
/
fY (y|θ)

)
/dθ>

=
∫
X
f ′′XY (x, y|θ)dx
fY (y|θ) −

∫
X
f ′XY (x, y|θ)dx
fY (y|θ)

(∫
X
f ′XY (x, y|θ)dx
fY (y|θ)

)
=
∫
X
f ′′XY (x, y|θ)dx
fY (y|θ) − S∗(y|θ)S∗(y|θ)>

(18)

The last substitution uses 10. Thus,

λ∗′′(y, θ) =
∫
X
f ′′XY (x, y|θ)dx
fY (y|θ) − S∗(y|θ)S∗(y|θ)> (19)

Let’s look at the integral of the second derivative of fXY (x, y|θ) in 19:

(∫
X

f ′′XY (x, y|θ)dx
/
fY (y|θ)

)
=
∫
X

f ′′XY (x, y|θ)dx
fXY (x, y|θ)

fXY (x, y|θ)
fY (y|θ) dx

=
∫
X

f ′′XY (x, y|θ)dx
fXY (x, y|θ) fX|Y (x|Y = y, θ)dx

(20)

This is the conditional expectation EX|Y,θ[f ′′XY (x, y|θ)dx/fXY (x, y|θ)] that we see 5 lines above the references
in Louis (1982). Using 17 we can write this in terms of B(x, y|θ):

∫
X

f ′′XY (z|θ)dx
fXY (x, y|θ) = −B(x, y|θ) + S(x, y|θ)S(x, y|θ)> (21)

Combining 19, 20, and 21, we can write the equation above the references in Louis:

λ∗′′(y, θ) = EX|y,θ[−B(X, y|θ) + S(X, y|θ)S(X, y|θ)>]− S∗(y|θ)S∗(y|θ)> (22)

The negative of this is the observed Fisher Information (14) which gives us equation 3.2 in Louis (1982):

I(θ, y) = EX|y,θ[B(X, y|θ)]− EX|y,θ[S(X, y|θ)S(X, y|θ)>] + S∗(y|θ)S∗(y|θ)> (23)

Derivation of equation 3.3 in Louis 1982

Louis states that “The first term in (3.2) is the conditional expected full data observed information matrix,
while the last two produce the expected information for the conditional distribution of X given X ∈ R.” His
X is my {X,Y } and X ∈ R means Y = y in my context. He writes this in simplified form with X replaced
by XY :

IY = IXY − IX|Y (24)

I(θ, y) = EX|y,θ[I(θ,X, y)]− IX|Y (25)

Let’s see how this is the case.

The full data observed information matrix is
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I(θ, x, y) = −λ′′(x, y|θ) = B(x, y, θ) (26)

This is simply the definition that Louis gives to B(x, y, θ). We do not know x so we do not know the full
data observed Information matrix. But we have the distribution of x conditioned on our data y.

EX|y,θ[B(X, y|θ)] (27)

is thus the expected full data observed information matrix conditioned on our observed data y. So this is the
first part of his statement. The second part of his statement takes a bit more effort to work out. First we
substitute S∗(y|θ) with EX|Y,θ[S(X, y|θ)] from 13. This gives us:

EX|y,θ[S(X, y|θ)S(X, y|θ)>]− S∗(y|θ)S∗(y|θ)> =
EX|y,θ[S(X, y|θ)S(X, y|θ)>]− EX|y,θ[S(X, y|θ)]EX|y,θ[S(X, y|θ)>]

(28)

Using the computational form of the variance, var(X) = E(XX)− E(X)E(X), we can see that 28 is the
conditional variance of S(X, y|θ).

varX|y,θ(S(X, y|θ)) (29)

But the variance of the first derivative of f ′(X|θ) is the expected Fisher Information of X (4). In this case,
it is the expected Fisher Information of the hidden state X, where we specify that X has the conditional
distribution fX|Y (X|Y = y, θ). Thus we have the second part of Louis’ statement.

Relating Louis 1982 to the update equations in the MARSS EM algorithm

The main result in Louis (1982) (23) can be written

I(θ, y) = EX|y,θ[B(X, y|θ)]− varX|y,θ[S(X, y|θ)] (30)

The M-step of the EM algorithm involves the first derivative of the log-likelihood with respect to θ, S(X, y|θ),
since it involves setting this derivative to zero:

Q′(θ|θj) =d(EX|y,θj
[log fXY (X, y|θ)])/dθ

=EX|y,θj
[log f ′XY (X, y|θ)]

=EX|y,θj
[S(X, y|θ)]

(31)

With the MARSS model, S(X, y|θ) is analytical and we can also compute B(X, y|θ), the second derivative,
analytically.

The difficulty arises with this term: varX|Y,θ[S(X, y|θ)]. The S(X, y|θ) is a summation from t = 1 to T that
involves Xt or XtX

>
t−1 for some parameters. When we do the cross-product, we will end up with terms

like E[XtX
>
t+k] and E[XtX

>
t Xt+kX

>
t+k]. The latter is not a problem; all the random variables in a MARSS

models are multivariate normal and the k-th central moments can be expressed in terms of the first and
second moments (5), but that will still leave us with terms like E[XtX

>
t+k], which are the smoothed covariance

between X at time t and t+ k conditioned on all the data (t = 1 : T ).

Computing these is not hard. These are the the n-step apart smoothed covariances. Harvey (1989), page
148, discusses how to use the Kalman filter to get the n-step ahead prediction covariances and a similar
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approach can be used (presumably) to get the V (t, t+ k) smoothed covariances. However this will end up
being computationally expensive because we will need all of the t, t+ k combinations, i.e., {1,3}, {1,4}, . . . ,
{2,3}, {2,4}, . . . . etc.. That will be a lot: T + T − 1 + T − 2 + T − 3 + . . ., i.e. T (T + 1)/2, smoothed
covariances.

Lystig and Hughes (2012) and Duan and Fulop (2011) discuss this issue for in a related application of the
approach in Louis (1982). They suggest that you do not need to include covariances with a large time
separation because the covariance goes to zero. You just need to include enough time-steps.

Conclusion

I think the approach of Louis (1982) is not viable for MARSS models. The derivatives B(x, y|θ) and S(x, y|θ)
are straight-forward (if tedious) to compute analytically following the approach in Holmes (2010). But the
computing all the n-step smoothed covariances is going to be very slow and each computation involves many
matrix multiplications. However, one could compute I(θ, y) via simulation using 30. It is easy enough
to simulate X using the MLEs and then you compute B(xb, y|θ) and S(xb, y|θ) for each where xb is the
bootstrapped x time series and y is the data. I don’t think it makes sense to do that for MARSS models
since there are two recursion approaches for computing the observed and expected Fisher Information using
f(y|θ) and the Kalman filter equations (Harvey 1989, pages 140-142; Cavanaugh and Shumway 1996).

Footnotes

1. Given a joint probability distribution of {X,Y }, the marginal distribution of Y is
∫
X
f(X,Y )dx.

Discussions of the estimators for MARSS models often use the property of the marginal distributions
of a multivariate normal without actually stating that this property is being used. The step in the
derivation will just say, ‘Thus’ with no indication of what property was just used. Reviewed here:
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html

If you have a joint likelihood of some random variables, and you want the likelihood of a subset of
those random variables, then you compute the marginal distribution. i.e. you integrate over the random
variables you want to get rid of:

L(θ|y)] =
∫
X

L(θ|X,Y )p(x|Y = y, θj)dx|Y=y. (32)

So we integrate out X from the full likelihood and then set Y = y to get the likelihood.

The marginal likelihood is a little different. The marginal likelihood is used when you want to get rid of some
of the parameters, nuisance parameters. The integral you use is different:

L(θ1|y) =
∫
θ2

p(y|θ1, θ2)p(θ2|θ1)dθ2 (33)

This presumes that you have p(θ2|θ1). The expected likelihood is different yet again:

EX,Y |Y=y,θj
[L(θ|X,Y )] =

∫
X

L(θ|X,Y )p(x|Y = y, θj)dx. (34)

On the surface it looks like the equation for L(θ|y) but it is different. θj is not θ. It is the parameter value at
which we are computing the expected value of X. Maximizing the EX,Y |Y=y,θj

[L(θ|X,Y )] will increase the
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likelihood but will not take you to the MLE. You have to imbed this maximization in the EM algorithm that
walks up the likelihood surface.

2. P (A|B) = P (A ∪B)/P (B)

3. I normally think about Y as being partially observed (missing values) so I also take the expectation over
Y (2) conditioned on Y (1), where (1) means observed and (2) means missing. In Holmes (2010), this is
done in order to derive general EM update equations for the missing values case. But my notation is
getting hairy, so for this write-up, I’m treating Y as fully observed; so no Y (2) and I’ve dropped the
integrals (expectations) over Y (2).

4. http://people.missouristate.edu/songfengzheng/Teaching/MTH541/Lecture%20notes/Fisher_info.
pdf

5. https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Higher_moments

Papers and online references

• Ng, Krishnan and McLachlan 2004 The EM algorithm. Section 3.5 discusses standard errors approaches
https://www.econstor.eu/dspace/bitstream/10419/22198/1/24_tk_gm_skn.pdf http://hdl.handle.net/
10419/22198

• Efron and Hinkley 1978 (argues that the observed Fisher Information is better than expected Fisher
Information in many/some cases. The same paper argues for the likelihood ratio method for CIs) As-
sessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher Information
https://www.stat.tamu.edu/~suhasini/teaching613/expected_observed_information78.pdf

• Hamilton 1994 http://web.pdx.edu/~crkl/readings/Hamilton94.pdf

• Hamilton’s exposition assumes you know the marginal distribution of a multivariate normal. Scroll
down to the bottom. http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html

• Meilijson 1989 Fast improvement to the EM algorithm on its own terms http://www.jstor.org/stable/
pdf/2345847.pdf

• Oakes 1999 Direct calculation of the information matrix via the EM algorithm http://www.jstor.org/
stable/pdf/2680653.pdf?_=1463187953783

• Ho, Shumway and Ombao 2006 (this has a brief statement that Oakes 1999 derivatives are hard to
compute. It doesn’t say why. It says nothing of Louis 1982.) Chapter 7, The state-space approach to
modeling dynamic processes Models for Intensive Longitudinal Data https://books.google.com/books?
hl=en&lr=&id=Semo20xZ_M8C

• Louis 1982 (so elegant. alas, MARSS deals with time series data. . . ) Finding the observed in-
formation matrix when using the EM algorithm http://www.jstor.org/stable/pdf/2345828.pdf http:
//www.markirwin.net/stat220/Refs/louis1982.pdf

• Lystig and Hughes 2012 (helped me better understand why Louis 1982 is hard for MARSS models) Exact
computation of the observed information matrix for hidden Markov models http://www.tandfonline.
com.offcampus.lib.washington.edu/doi/abs/10.1198/106186002402

• Duan and Fulop 2011 (also helped me better understand why Louis 1982 is hard for MARSS models) A
stable estimator for the information matrix under EM for dependent data http://www.rmi.nus.edu.sg/
DuanJC/index_files/files/EM_Variance_March%205%202007.pdf http://link.springer.com/article/
10.1007/s11222-009-9149-4

• Naranjo 2007 (didn’t use) State-space models with exogenous variables and missing data, PhD U of FL
http://etd.fcla.edu/UF/UFE0021568/naranjo_a.pdf

8

http://people.missouristate.edu/songfengzheng/Teaching/MTH541/Lecture%20notes/Fisher_info.pdf
http://people.missouristate.edu/songfengzheng/Teaching/MTH541/Lecture%20notes/Fisher_info.pdf
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Higher_moments
https://www.econstor.eu/dspace/bitstream/10419/22198/1/24_tk_gm_skn.pdf
http://hdl.handle.net/10419/22198
http://hdl.handle.net/10419/22198
https://www.stat.tamu.edu/~suhasini/teaching613/expected_observed_information78.pdf
http://web.pdx.edu/~crkl/readings/Hamilton94.pdf
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
http://www.jstor.org/stable/pdf/2345847.pdf
http://www.jstor.org/stable/pdf/2345847.pdf
http://www.jstor.org/stable/pdf/2680653.pdf?_=1463187953783
http://www.jstor.org/stable/pdf/2680653.pdf?_=1463187953783
https://books.google.com/books?hl=en&lr
https://books.google.com/books?hl=en&lr
http://www.jstor.org/stable/pdf/2345828.pdf
http://www.markirwin.net/stat220/Refs/louis1982.pdf
http://www.markirwin.net/stat220/Refs/louis1982.pdf
http://www.tandfonline.com.offcampus.lib.washington.edu/doi/abs/10.1198/106186002402
http://www.tandfonline.com.offcampus.lib.washington.edu/doi/abs/10.1198/106186002402
http://www.rmi.nus.edu.sg/DuanJC/index_files/files/EM_Variance_March%205%202007.pdf
http://www.rmi.nus.edu.sg/DuanJC/index_files/files/EM_Variance_March%205%202007.pdf
http://link.springer.com/article/10.1007/s11222-009-9149-4
http://link.springer.com/article/10.1007/s11222-009-9149-4
http://etd.fcla.edu/UF/UFE0021568/naranjo_a.pdf


• Dempster, Laird, Rubin 1977 (didn’t really use but looked up more info on the ‘score’ function
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